精英家教网 > 初中数学 > 题目详情

如图,以等腰直角△ABC两锐角顶点A、B为圆心作等圆,⊙A与⊙B恰好外切,若AC=2,那么图中两个扇形(即阴影部分)的面积之和为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
B
分析:根据题意可判断⊙A与⊙B是等圆,再由直角三角形的两锐角互余,即可得到∠A+∠B=90°,根据扇形的面积公式即可求解.
解答:∵⊙A与⊙B恰好外切,
∴⊙A与⊙B是等圆,
∵AC=2,△ABC是等腰直角三角形,
∴AB=2
∴两个扇形(即阴影部分)的面积之和=+==πR2=
故选B.
点评:本题考查了扇形的面积计算及相切两圆的性质,解答本题的关键是得出两扇形面积之和的表达式,难度一般.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,以等腰直角三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,…,如此作下去,若OA=OB=1,则第2008个等腰直角三角形的面积S2008=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以等腰直角三角形ABC的斜边AB与边面内作等边△ABD,连接DC,以DC当边作等边△DCE,B、E在C、D的同侧,若AB=
2
,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以等腰直角三角形ABC的斜边AB为边向内作等边△ABD,连接DC,以DC为边作等边△DCE.B、E在C、D的同侧,若AB=
2
,则BE=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宁夏)如图,以等腰直角△ABC两锐角顶点A、B为圆心作等圆,⊙A与⊙B恰好外切,若AC=2,那么图中两个扇形(即阴影部分)的面积之和为(  )

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(宁夏卷)数学(解析版) 题型:选择题

如图,以等腰直角△ABC两锐角顶点A、B为圆心作等圆,⊙A与⊙B恰好外切,若AC=2,那么图中两个扇形(即阴影部分)的面积之和为

A.       B.       C.      D.

 

查看答案和解析>>

同步练习册答案