½â£º£¨1£©µ±m=1ʱ£¬·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=

£¬
¡àµãA
1µÄ×ø±êΪ£¨1£¬1£©£¬µãA
2µÄ×ø±êΪ£¨2£¬

£©£¬
°ÑµãA
1£¨1£¬1£©£¬µãA
2£¨2£¬

£©´úÈëy=k
1x+b
1µÃ
k
1+b
1=1¢Ù£¬
2k
1x+b
1=

¢Ú
¡à¢Ú-¢ÙµÃk
1=

-1=-

£»
¹Ê´ð°¸Îª-

£»
£¨2£©µ±m=1ʱ£¬·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=

£¬
µãA
1µÄ×ø±êΪ£¨1£¬1£©£¬µãA
2µÄ×ø±êΪ£¨2£¬

£©£¬µãA
3µÄ×ø±êΪ£¨3£¬

£©£¬µãA
4µÄ×ø±êΪ£¨4£¬

£©£¬
Ó루1£©Ò»Ñù£¬k
2=

-

£¬k
3=

-

£¬
¡àk
1+k
2+k
3=

-1+

-

+

-

=-1+

=-

£»
¹Ê´ð°¸Îª-

£»
£¨3£©¢Ùµ±m=2ʱ£¬·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=

£¬
¡àµãA
1×ø±êΪ£¨1£¬2£©£¬µãA
2×ø±êΪ£¨2£¬

£©£¬µãA
3µÄ×ø±êΪ£¨3£¬

£©£¬µãA
4µÄ×ø±êΪ£¨4£¬

£©£¬¡£¬µãA
20×ø±êΪ£¨20£¬

£©£¬µãA
21×ø±êΪ£¨21£¬

£©£¬
Ó루1£©Ò»Ñù£¬k
1=

-

£¬k
2=

-

£¬k
3=

-

£¬¡£¬k
20=

-

£¬
¡àk
1+k
2+k
3+¡+k
20=

-

+

-

+

-

+¡+

-

=-2+

=-

£»
¢ÚµãA
1×ø±êΪ£¨1£¬m£©£¬µãA
2×ø±êΪ£¨2£¬

£©£¬µãA
3µÄ×ø±êΪ£¨3£¬

£©£¬µãA
4µÄ×ø±êΪ£¨4£¬

£©£¬¡£¬µãA
n×ø±êΪ£¨n£¬

£©£¬µãA
n+1×ø±êΪ£¨n+1£¬

£©£®
Ó루1£©Ò»Ñù£¬k
1=

-m£¬k
2=

-

£¬k
3=

-

£¬¡£¬k
n=

-

£¬
¡àk
1+k
2+k
3+¡+k
n=

-m+

-

+

-

+¡+

-

=-m+

=-

£®
·ÖÎö£º£¨1£©ÓÉ·´±ÈÀýº¯ÊýµÄ½âÎöʽy=

¿ÉÈ·¶¨µãA
1µÄ×ø±êΪ£¨1£¬1£©£¬µãA
2µÄ×ø±êΪ£¨2£¬

£©£¬ÔÙ°ÑËüÃÇ´úÈëy=k
1x+b
1µÃµ½k
1+b
1=1¢Ù£¬2k
1x+b
1=

¢Ú£¬È»ºóÓâÚ-¢Ù¿ÉÇóµÃk
1=

-1=-

£»
£¨2£©µ±m=1ʱ£¬·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=

£¬¿ÉÈ·¶¨µãA
1µÄ×ø±êΪ£¨1£¬1£©£¬µãA
2µÄ×ø±êΪ£¨2£¬

£©£¬µãA
3µÄ×ø±êΪ£¨3£¬

£©£¬µãA
4µÄ×ø±êΪ£¨4£¬

£©£¬Ó루1£©Ò»ÑùµÃµ½k
2=

-

£¬k
3=

-

£¬Ò׵õ½k
1+k
2+k
3掙术
£¨3£©¢Ùµ±m=2ʱ£¬·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=

£¬ÏÈÈ·¶¨µãA
1×ø±êΪ£¨1£¬2£©£¬µãA
2×ø±êΪ£¨2£¬

£©£¬µãA
3µÄ×ø±êΪ£¨3£¬

£©£¬µãA
4µÄ×ø±êΪ£¨4£¬

£©£¬¡£¬µãA
20×ø±êΪ£¨20£¬

£©£¬µãA
21×ø±êΪ£¨21£¬

£©£¬·ÂÕÕ£¨1£©µÃµ½k
1=

-

£¬k
2=

-

£¬k
3=

-

£¬¡£¬k
20=

-

£¬Ôòk
1+k
2+k
3+¡+k
20=

-

+

-

+

-

+¡+

-

£¬È»ºó½øÐмӼõÔËËã¼´¿É£»
¢ÚÏȵõ½µãA
1×ø±êΪ£¨1£¬m£©£¬µãA
2×ø±êΪ£¨2£¬

£©£¬µãA
3µÄ×ø±êΪ£¨3£¬

£©£¬µãA
4µÄ×ø±êΪ£¨4£¬

£©£¬¡£¬µãA
n×ø±êΪ£¨n£¬

£©£¬µãA
n+1×ø±êΪ£¨n+1£¬

£©£¬ÔÙͬÑù¿ÉµÃµ½k
1=

-m£¬k
2=

-

£¬k
3=

-

£¬¡£¬k
n=

-

£¬Ôòk
1+k
2+k
3+¡+k
n=

-m+

-

+

-

+¡+

-

£¬È»ºó½øÐзÖʽµÄ¼Ó¼õÔËËã¼´¿É£®
µãÆÀ£º±¾Ì⿼²éÁË·´±ÈÀýº¯Êý×ÛºÏÌ⣺µãÔÚ·´±ÈÀýº¯ÊýͼÏóÉÏ£¬ÔòµãµÄ×ø±êÂú×ãÆä½âÎöʽ£»ÔËÓôý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽ£»ÊìÁ·ÕÆÎÕ·ÖÊýÓë·ÖʽµÄÔËË㣮