精英家教网 > 初中数学 > 题目详情
已知直角梯形OABC在如图所示的平面直角坐标系中,AB∥OC,AB=10,OC=22,BC=15,动点M从A点出发,以每秒一个单位长度的速度沿AB向点B运动,同时动点N从C点出发,以每秒2个单位长度的速度沿CO向O点运动.当其中一个动点运精英家教网动到终点时,两个动点都停止运动.
(1)求B点坐标;
(2)设运动时间为t秒;
①当t为何值时,四边形OAMN的面积是梯形OABC面积的一半;
②当t为何值时,四边形OAMN的面积最小,并求出最小面积;
③若另有一动点P,在点M、N运动的同时,也从点A出发沿AO运动.在②的条件下,PM+PN的长度也刚好最小,求动点P的速度.
分析:(1)由题意可以先构造矩形OABD,然后根据勾股定理进行求解;
(2)是动点型的题要设好未知量:
①AM=t,ON=OC-CN=22-2t,根据四边形OAMN的面积是梯形OABC面积的一半,列出等式求出t值;
②设四边形OAMN的面积为S,用t表示出四边形OAMN的面积,根据一次函数的性质求出最值;
③由题意取N点关于y轴的对称点N′,连接MN′交AO于点P,此时PM+PN=PM+PN′=MN长度最小,表示出点M,N,N′的坐标,设直线MN′的函数关系式为y=kx+b,最后待定系数法进行求解.
解答:精英家教网解:(1)作BD⊥OC于D,
则四边形OABD是矩形,
∴OD=AB=10,
∴CD=OC-OD=12,
∴OA=BD=
BC2-CD2
=9,
∴B(10,9);

(2)①由题意知:AM=t,ON=OC-CN=22-2t,
∵四边形OAMN的面积是梯形OABC面积的一半,
1
2
(t+22-2t)×9=
1
2
×
1
2
(10+22)×9

∴t=6,
②设四边形OAMN的面积为S,则s=
1
2
(t+22-2t)×9=-
9
2
t+99

∵0<t≤10,且s随t的增大而减小,
∴当t=10时,s最小,最小面积为54.
③如备用图,取N点关于y轴的对称点N′,连接MN′交AO于点P,
精英家教网此时PM+PN=PM+PN′=MN′长度最小.
当t=10时,AM=t=10=AB,ON=22-2t=2,
∴M(10,9),N(2,0),
∴N′(-2,0);
设直线MN′的函数关系式为y=kx+b,则
10k+b=9
-2k+b=0

解得
k=
3
4
b=
3
2

∴P(0,
3
2
),
∴AP=OA-OP=
15
2

∴动点P的速度为
15
2
÷10=
3
4
个单位长度/秒.
点评:此题是一道综合题,难度比较大,考查了勾股定理的应用和待定系数法求函数的解析式,动点型的题是中考的热点,平时要多加练习,注意熟悉这方面的题型.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于E和F.
(1)求经过A、B、C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)连接EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系中,已知直角梯形OABC,BC∥OA,A(20,0),C(0,4
3
),∠BOC=30°,点P在线段AO上运动,以点P为圆心作⊙P,使⊙P始终与AB边相切,切点为Q,设⊙P的半径为x,五边形OPQBC的面积为S.
(1)求点B坐标;
(2)求S关于x的函数关系式;
(3)求出(2)中x的取值范围;
(4)当x为何值时,⊙P与AB、OB都相切.(要求直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在平面直角坐标系中,已知直角梯形OABC的顶点分别是O(0,0),点A(9,0),B(6,4),C(0,4).点P从点C沿C-B-A运动,速度为每秒2个单位,点Q从A向O点运动,速度为每秒1个单位,当其中一个点到达终点时,另一个点也停止运动.两点同时出发,设运动的时间是t秒.
(1)点P和点Q谁先到达终点?到达终点时t的值是多少?
(2)当t取何值时,直线PQ∥AB?并写出此时点P的坐标.(写出解答过程)
(3)是否存在符合题意的t的值,使直角梯形OABC被直线PQ分成面积相等的两个部分?如精英家教网果存在,求出t的值;如果不存在,请说明理由.
(4)探究:当t取何值时,直线PQ⊥AB?(只要直接写出答案,不需写出计算过程).

查看答案和解析>>

科目:初中数学 来源:第27章《二次函数》中考题集(28):27.3 实践与探索(解析版) 题型:解答题

如图,已知直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于E和F.
(1)求经过A、B、C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)连接EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值.

查看答案和解析>>

同步练习册答案