精英家教网 > 初中数学 > 题目详情
如图,二次函数y=ax2+bx+c的图象与x轴的一个交点是(-2,0),顶点是(1,3),根据精英家教网图象回答下列问题:
(1)当x
 
时,y随x的增大而增大;
(2)方程ax2+bx+c=0的两个根为
 
,方程ax2+bx+c=3的根为
 

(3)不等式ax2+bx+c>0的解集为
 

(4)若方程ax2+bx+c=k无解,则k的取值范围为
 
分析:(1)由图象得,开口向下,所以,当x<1时,y随x的增大而增大;
(2)由图可得,函数与x轴的另一个交点为(4,0),即可得出函数的两个根;把(1,3),(-2,0),(4,0)代入函数式,可求出a、b、c的值,解答即可得出方程ax2+bx+c=3的根;
(3)把(2)中a、b、c的值代入,直接解答出即可;
(4)方程ax2+bx+c=k无解,则△=b2-4ac<0,即可解出k的取值范围;
解答:解:(1)由图象得,当x<1时,y随x的增大而增大;

(2)由图象可得,函数与x轴的另一个交点为(4,0),
∴方程的两个根为:x1=-2,x2=4;
∴把(1,3),(-2,0),(4,0)代入函数式,
a+b+c=3
4a-2b+c=0
16a+4b+c=0

∴函数关系式为:y=-
1
3
x2+
2
3
x+
8
3

解方程-
1
3
x2+
2
3
x+
8
3
=3得,
x1=1,x2=-1;

(3)不等式-
1
3
x2+
2
3
x+
8
3
>0,
得,x2-2x-8<0,
解得,-2<x<4;

(4)方程-
1
3
x2+
2
3
x+
8
3
=k无解,
∴△=b2-4ac=(
2
3
)
2
-4×(-
1
3
)×(
8
3
-k)<0,
解得,k>3;
故答案为(1)<1;(2)x1=-2,x2=4;x1=1,x2=-1;
(3)-2<x<4;(4)k>3.
点评:本题考查了二次函数的性质,要熟悉二次函数的性质,并会根据条件求出字母系数的值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,二次函数的图象经过点D(0,
7
9
3
),且顶点C的横坐标为4,该图象在x轴上截得的线段AB的长为6.
(1)求二次函数的解析式;
(2)在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;
(3)在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数图象的顶点为坐标原点O,且经过点A(3,3),一次函数的图象经过点A和点B(6,0).
(1)求二次函数与一次函数的解析式;
(2)如果一次函数图象与y相交于点C,点D在线段AC上,与y轴平行的直线DE与二次函数图象相交于点E,∠CDO=∠OED,求点D的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,二次函数y=ax2+bx+c的图象与x轴交于B、C两点,与y轴交于点A(0,-3),∠ABC=45°,∠ACB=60°,求这个二次函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,如图的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象提供的信息,解答下列问题:
(1)求累积利润s(万元)与时间t(月)之间的函数关系式;
(2)求截止到几月末公司累积利润可达30万元;
(3)从第几个月起公司开始盈利?该月公司所获利润是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数y=ax2+bx+c的图象与x轴相交于两个点,根据图象回答:(1)b
0(填“>”、“<”、“=”);
(2)当x满足
x<-4或x>2
x<-4或x>2
时,ax2+bx+c>0;
(3)当x满足
x<-1
x<-1
时,ax2+bx+c的值随x增大而减小.

查看答案和解析>>

同步练习册答案