精英家教网 > 初中数学 > 题目详情
如图,直线EF交⊙O于A、B两点,AC是⊙O直径,DE是⊙O的切线,且DE⊥EF,垂足为E.

(1)求证:AD平分∠CAE;
(2)若DE=4cm,AE=2cm,求⊙O的半径.
(1)证明:连接OD,
∵OD=OA  ∴∠ODA=∠OAD    ………… 1分
∵DE是⊙O的切线
∴∠ODE=90° OD⊥DE    ………… 2分
又∵DE⊥EF   ∴OD∥EF   …………… 3分
∴∠ODA=∠DAE    ∴∠DAE=∠OAD  ∴AD平分∠CAE. ………… 5分
(2)解:连接CD  ∵AC是⊙O直径   ∴∠ADC=90°………………… 6分
由(1)知:∠DAE=∠OAD  ∠AED=∠ADC 
∴△ADC∽△AED    ∴             ………………… 7分
在Rt△ADE中,DE=4  AE=2  ∴AD=     ………………… 8分
  ∴AC=10               ………………… 9分
∴ ⊙O的半径是5.                          ………………… 10分
(1)连接OD,得出∠OAD=∠ODA,再证明∠EAD=∠ODA,得出结论;
(2)连接CD,证明△AED∽△ADC,根据勾股定理和相似三角形的性质求出半径.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,⊙P与轴相切于坐标原点O(0,0),与轴相交于点A(5,0),过点A的直线AB与轴的正半轴交于点B,与⊙P交于点C.
(1)已知AC=3,求点B的坐标;                 
(2)若AC=, D是OB的中点.问:点O、P、C、D四点是否在同一圆上?请说明理由.如果这四点在同
一圆上,记这个圆的圆心为,函数的图象经过点,求的值(用含的代数式表示).                 
  

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

推理证明(本小题满分6分)
如图,在△ABC中,DAB边上一点,圆ODBC三点, ÐDOC=2ÐACD=90°.

(1)求证:直线AC是圆O的切线;
(2)如果ÐACB=75°,圆O的半径为2,求BD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知⊙O1与⊙O2相切 (包括内切与外切 ) ,⊙O1的半径为3 cm ,⊙O2的半径为2 cm,则O1O2的长是(    )
A.1 cmB.5 cmC.1 cm或5 cmD.0.5cm或2.5cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC内接于⊙O,CA=CB,CD∥AB且与OA的延长线交于点D.

(1)判断CD与⊙O的位置关系并说明理由;
(2)若∠ACB=120°,OA=2,求CD的长.
(3)在(2)条件下求图中的阴影部分面积。(结果可含

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知,圆锥的轴截面是边长为4的等边三角形,则此圆锥的侧面积为            

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知⊙O的直径AB为6cm,弦CD与AB相交,夹角为30°,交点M恰好为AB的一个
三等分点,则CD的长为  ▲  cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,⊙O是正△ABC的外接圆,点D是弧AC上一点,则∠BDC的度数是     .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在平面直角坐标系中,点P坐标为(-2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于【   】
A.-4和-3之间 B.3和4之间
C.-5和-4之间 D.4和5之间

查看答案和解析>>

同步练习册答案