精英家教网 > 初中数学 > 题目详情
如图,直线y=-x+20与x轴、y轴分别交于A、B两点,动点P从A点开始在线段AO上以每秒3个长度单位的速度向原点O运动.动直线EF从x轴开始以每秒1个长度单位的速度向上平行移动(即EF∥x轴),且分别与y轴、线段AB交于E、F点,当P点到达O点时,点P和直线EF均停止运动.连结FP,设动点P与动直线EF同时出发,运动时间为t秒.
(1)当t=1秒时,求梯形OPFE的面积.
(2)t为何值时,梯形OPFE的面积最大,最大面积是多少?
分析:(1)根据直线y=-x+20与x轴、y轴分别交于A、B两点,求出A和B点的坐标,再根据当t=1秒时,得出P点坐标,由图形可知点F与点E的纵坐标都为1,把y=1代入y=-x+20中,
求出x的值,得出点F的坐标,最后根据梯形的面积公式即可得出答案;
(2)先设t=t0时,根据图形得出P、E、F的坐标,再根据梯形的面积公式进行计算即可得出答案.
解答:解:(1)∵直线y=-x+20与x轴、y轴分别交于A、B两点,
∴A点的坐标是(20,0),B点的坐标是(0,20),
∴当t=1秒时,P点坐标为(17,0),E(0,1),
由图形可知点F与点E的纵坐标都为1,把y=1代入y=-x+20中,
解得x=19,
∴F(19,1),
梯形OPFE的面积S=
1
2
(EF+OP)×OE=18,
∴当t=1秒时,梯形面积是18;

(2)设t=t0时,由图可知P(20-3t0,0),E(0,t0),F(20-t0,t0),则:
梯形OPFE的面积S=
1
2
×(EF+OP)×OE=
1
2
×(20-t0+20-3t0)×t0=-2(t0-5)2+50,
当t0=5时S有最大值,则最大值为50,
当t=5时,梯形OPFE的面积最大,最大为50.
点评:此题考查了一次函数的综合,用到的知识点是根据直线求点的坐标,梯形的面积公式,利用二次函数的解析式求最值问题,在图形中渗透运动的观点是中考中经常出现的问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,直线:y1=kx+b与抛物线:y2=x2+bx+c交于点A(-2,4),B(8,2).精英家教网
(1)求出直线解析式;
(2)求出使y1>y2的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,直线a、b都与直线c相交,给出下列条件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判断a∥b的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,直线AB、CD相交于点E,EF⊥AB于E,若∠CEF=59°,则∠AED的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线y=6-x交x轴、y轴于A、B两点,P是反比例函数y=
4
x
(x>0)
图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F.则AF•BE=(  )
A、8
B、6
C、4
D、6
2

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,直线a∥c,b∥c,直线d与直线a、b、c相交,已知∠1=60°,求∠2、∠3的度数(可在图中用数字表示角).

查看答案和解析>>

同步练习册答案