精英家教网 > 初中数学 > 题目详情
用两个全等的含30°角的直角三角形制作如图A、B所示的两种卡片,两种卡片中扇形的半径均为2,且扇形所在圆的圆心分别为长直角边的中点和30°角的顶点,按先A后B的顺序交替摆放A、B两种卡片得到如图所示的图案.若摆放这个图案共用两种卡片12张,则这个图案中阴影部分的面积之和为

分析:分别求出A、B两种扇形的面积,再求图形中A、B两种扇形的个数,求阴影部分的面积,注意按先A后B的顺序交替摆放A、B两种卡片.
解答:解:依题意,A种图中扇形圆心角为60°,半径为2,面积为
60π×22
360
=
3

B种图中扇形圆心角为30°,半径为2,面积为
30π×22
360
=
1
3
π.
故图案中阴影部分面积和为6×(
3
+
1
3
π)=6π.
故答案是:6π.
点评:本题考查了扇形面积的计算.关键是先计算每一个基本图形的面积,再确定组合中含基本图形的个数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

用两个全等的含30°角的直角三角形制作如图1所示的两种卡片,两种卡片中扇形的半径均为1,且扇形所在圆的圆心分别为长直角边的中点和30°角的顶点,按先A后B的顺序交替摆放A、B两种卡片得到图2所示的图案.若摆放这个图案共用两种卡片
8张,则这个图案中阴影部分的面积之和为
π
π
; 若摆放这个图案共用两种卡片(2n+1)张( n为正整数),则这个图案中阴影部分的面积之和为
3n+2
12
π
3n+2
12
π
.(结果保留π )

查看答案和解析>>

科目:初中数学 来源: 题型:

用两个全等的含30°角的直角三角形,长直角边长为2.制作如图1所示的两种卡片,两种卡片中扇形的半径均为1,且扇形所在圆的圆心分别为长直角边的中点和30°角的顶点,按先A后B的顺序交替摆放A、B两种卡片得到图2所示的图案.若摆放这个图案共用两种卡片8张,则这个图案中阴影部分的之和为
π
π
.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

用两个全等的含30°角的直角三角形制作如图1所示的两种卡片,两种卡片中扇形的 半径均为1, 且扇形所在圆的圆心分别为长直角边的中点和30°角的顶点, 按先AB 的顺序交替摆放AB两种卡片得到图2所示的图案. 若摆放这个图案共用两种卡片8张,则这个图案中阴影部分的面积之和为           ; 若摆放这个图案共用两种卡片(2n+1)张( n为正整数), 则这个图案中阴影部分的面积之和为         . (结果保留p )

 

查看答案和解析>>

科目:初中数学 来源: 题型:

用两个全等的含30°角的直角三角形制作如图1所示的两种卡片, 两种卡片中扇形的半径均为1, 且扇形所在圆的圆心分别为长直角边的中点和30°角的顶点, 按先AB 的顺序交替摆放AB两种卡片得到图2所示的图案. 若摆放这个图案共用两种卡片8张,则这个图案中阴影部分的面积之和为           ; 若摆放这个图案共用两种卡片(2n+1)张( n为正整数), 则这个图案中阴影部分的面积之和为         . (结果保留p )

查看答案和解析>>

同步练习册答案