【题目】如图,直线L经过点A(0,﹣1),且与双曲线c:交于点B(2,1).
(1)求双曲线c及直线L的解析式;
(2)已知P(a﹣1,a)在双曲线c上,求P点的坐标.
【答案】 (1) y=x﹣1
(2) P (1,2)或(﹣2,﹣1)
【解析】
(1)将B坐标代入反比例解析式求出m的值,确定出双曲线c解析式;设一处函数解析式为y=kx+b,将A与B坐标代入求出k与b的值,即可确定出直线L的解析式。
(2)将P坐标代入反比例解析式求出a的值,即可确定出P坐标。
解:(1)将B(2,1)代入反比例解析式得:m=2,
∴双曲线c的解析式为。
设直线L解析式为y=kx+b,
将A与B坐标代入得:,解得:。
∴直线L解析式为y=x﹣1。
(2)将P(a﹣1,a)代入反比例解析式得:a(a﹣1)=2,
整理得:a2﹣a﹣2=0,即(a﹣2)(a+1)=0,解得:a=2或a=﹣1。
∴P坐标为(1,2)或(﹣2,﹣1)
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c的图象交x轴于A(4,0),B(﹣1,0)两点,交y轴于点C,连结AC.
(1)填空:该抛物线的函数解析式为 ,其对称轴为直线 ;
(2)若P是抛物线在第一象限内图象上的一动点,过点P作x轴的垂线,交AC于点Q,试求线段PQ的最大值;
(3)在(2)的条件下,当线段PQ最大时,在x轴上有一点E(不与点O,A重合),且EQ=EA,在x轴上是否存在点D,使得△ACD与△AEQ相似?如果存在,请直接写出点D的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D、E、C三点在同一条直线上,连接BD.
(1)如图1,求证:△ADB≌△AEC
(2)如图2,当∠BAC=∠DAE=90°时,试猜想线段AD,BD,CD之间的数量关系,并写出证明过程;
(3)如图3,当∠BAC=∠DAE=120°时,请直接写出线段AD,BD,CD之间的数量关系式为: (不写证明过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】反比例函数的图象的一支在第一象限,A(﹣1,a)、B(﹣3,b)均在这个函数的图象上.
(1)图象的另一支位于什么象限?常数n的取值范围是什么?
(2)试比较a、b的大小;
(3)作AC⊥x轴于点C,若△AOC的面积为5,求这个反比例函数的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a-2b+c>0;④2c<3b;⑤当m≤x≤m+1时,函数的最大值为a+b+c,则0≤m≤1;其中正确的结论有( )
A. 2 个 B. 3 个 C. 4 个 D. 5 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC的边长为30,点M为线段AB上一动点,将等边△ABC沿过点M的直线折叠,使点A落在直线BC上的点D处,且BD∶DC=1∶4,折痕与直线AC交于点N,则AN的长为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线 yx2 bxc经过△ ABC 的三个顶点,其中点 A(0,1),点 B(9,10),AC∥x 轴,点 P 是直线 AC 下方抛物线上的动点,过点 P 且与 y 轴平行的直线 l 与直线 AB、AC 分别交于点 E、F.
(1)求抛物线的函数表达式;
(2)如图 1,当四边形 AECP 的面积最大时,求点 P 的坐标和四边形 AECP 的最大面积;
(3)如图 2,当点 P 为抛物线的顶点时,在直线 AC 上是否存在点 Q,使得以 C,P,Q 为顶点的三角形与△ ABC 相似?若存在,请直接写出点 Q 的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小刚在实践课上要做一个如图1所示的折扇,折扇扇面的宽度AB是骨柄长OA的,折扇张开的角度为120°.小刚现要在如图2所示的矩形布料上剪下扇面,且扇面不能拼接,已知矩形布料长为24cm,宽为21cm.小刚经过画图、计算,在矩形布料上裁剪下了最大的扇面,若不计裁剪和粘贴时的损耗,此时扇面的宽度AB为( )
A. 21cm B.20 cm C. 19cm D. 18cm
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com