Ìî±í½âÌ⣺
·½³ÌÁ½¸ùx1£¬x2x1+x2=x1x2=
x2+2x+1=0
x2-3x-4=0
x2+4x-7=0
ÉϱíÄãÄܲÂÏëÈôx1£¬x2ÊÇ·½³Ìax2+bx+c=0£¨a²»µÈ0£©µÄÁ½¸ùÔòx1+x2=______£¬x1x2=______
ÀûÓÃÄãµÄ²ÂÏë½âÏÂÁÐÎÊÌ⣺
£¨1£©Èôx1£¬x2ÊÇ·½³Ìx2-2x-3=0µÄÁ½¸ùÇó£¬x12+x22ºÍ£¨x1+2£©£¨x2+2£©µÄÖµ£®
£¨2£©ÒÑÖª2+Êýѧ¹«Ê½ÊÇ·½³Ìx2-4x+c=0µÄÒ»¸ö¸ù£¬Ç󷽳̵ÄÁíÒ»¸ö¸ù¼°cµÄÖµ£®

½â£º±íÖдÓ×óÖÁÓÒΪ£ºx1=-1£¬x2=-1£¬x1+x2=-2£¬x1•x2=1£»
x1=4£¬x2=-1£¬x1+x2=-3£¬x1•x2=4£»
x1=-2+£¬x2=-2-£¬x1+x2=-4£¬x1•x2=-7£»
¹Ê´ð°¸Îª-£¬£»
£¨1£©¡ßx1+x2=2£¬x1•x2=-3£¬
¡àx12+x22=£¨x1+x2£©2-2x1•x2=22-2¡Á£¨-3£©=4+6=10£»
£¨x1+2£©£¨x2+2£©=x1•x2+2£¨x1+x2£©+4=-3+4+4=5£»
£¨3£©Éè·½³ÌµÄÁíÒ»¸ö¸ùΪx2£¬
¡ß2++x2=4£¬
¡àx2=2-£»
Óɡߣ¨2+£©•x2=c£¬
¡àc=£¨2+£©£¨2-£©=4-3=1£¬
ËùÒÔ·½³ÌµÄÁíÒ»¸ö¸ùΪ2-£¬cµÄֵΪ1£®
·ÖÎö£ºÀûÓÃÒòʽ·Ö½â·¨ºÍÇó¸ù¹«Ê½½â·½³Ìx2+2x+1=0£¬x2-3x-4=0£¬x2+4x-7=0£¬È»ºóÌî±í£¬¸ù¾Ý±íÖеÄÊý¾Ý²ÂÏëÈôx1£¬x2ÊÇ·½³Ìax2+bx+c=0£¨a²»µÈ0£©µÄÁ½¸ùÔòx1+x2=-£¬x1x2=£»
£¨1£©¸ù¾Ý¸ùÓëϵÊýµÄ¹ØϵµÃµ½x1+x2=2£¬x1•x2=-3£¬È»ºó±äÐÎx12+x22=£¨x1+x2£©2-2x1•x2£¬£¨x1+2£©£¨x2+2£©=x1•x2+2£¨x1+x2£©+4£¬ÔÙ°Ñx1+x2=2£¬x1•x2=-3ÕûÌå´úÈë¼ÆËã¼´¿É£»
£¨2£©Éè·½³ÌµÄÁíÒ»¸ö¸ùΪx2£¬¸ù¾Ý¸ùÓëϵÊýµÄ¹ØϵµÃµ½2++x2=4£¬£¨2+£©•x2=c£¬ÏÈÇó³öx2£¬È»ºó¼ÆËãcµÄÖµ£®
µãÆÀ£º±¾Ì⿼²éÁËÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0£¨a¡Ù0£©µÄ¸ùÓëϵÊýµÄ¹Øϵ£ºÈç¹û·½³ÌµÄÁ½¸ùΪx1£¬x2£¬Ôòx1+x2=-£¬x1•x2=£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ìî±í½âÌ⣺
·½³Ì Á½¸ùx1£¬x2 x1+x2= x1x2=
x2+2x+1=0
x2-3x-4=0
x2+4x-7=0
ÉϱíÄãÄܲÂÏëÈôx1£¬x2ÊÇ·½³Ìax2+bx+c=0£¨a²»µÈ0£©µÄÁ½¸ùÔòx1+x2=
-
b
a
-
b
a
£¬x1x2=
c
a
c
a

ÀûÓÃÄãµÄ²ÂÏë½âÏÂÁÐÎÊÌ⣺
£¨1£©Èôx1£¬x2ÊÇ·½³Ìx2-2x-3=0µÄÁ½¸ùÇó£¬x12+x22ºÍ£¨x1+2£©£¨x2+2£©µÄÖµ£®
£¨2£©ÒÑÖª2+
3
ÊÇ·½³Ìx2-4x+c=0µÄÒ»¸ö¸ù£¬Ç󷽳̵ÄÁíÒ»¸ö¸ù¼°cµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2012ÄêËÄ´¨Ê¡³É¶¼ÊÐÖп¼ÊýѧģÄâÊÔ¾í£¨¶þ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

Ìî±í½âÌ⣺
·½³ÌÁ½¸ùx1£¬x2x1+x2=x1x2=
x2+2x+1=0
x2-3x-4=0
x2+4x-7=0
ÉϱíÄãÄܲÂÏëÈôx1£¬x2ÊÇ·½³Ìax2+bx+c=0£¨a²»µÈ0£©µÄÁ½¸ùÔòx1+x2=______£¬x1x2=______
ÀûÓÃÄãµÄ²ÂÏë½âÏÂÁÐÎÊÌ⣺
£¨1£©Èôx1£¬x2ÊÇ·½³Ìx2-2x-3=0µÄÁ½¸ùÇó£¬x12+x22ºÍ£¨x1+2£©£¨x2+2£©µÄÖµ£®
£¨2£©ÒÑÖª2+ÊÇ·½³Ìx2-4x+c=0µÄÒ»¸ö¸ù£¬Ç󷽳̵ÄÁíÒ»¸ö¸ù¼°cµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸