精英家教网 > 初中数学 > 题目详情
19.若函数y=x-a(a为常数)与函数y=-2x+b(b为常数)的图象的交点坐标是(2,1),则关于x、y的二元一次方程组$\left\{\begin{array}{l}{x-y=a}\\{2x+y=b}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$.

分析 根据函数图象交点坐标为两函数解析式组成的方程组的解可得到方程组$\left\{\begin{array}{l}{x-y=a}\\{2x+y=b}\end{array}\right.$的解.

解答 解:因为函数y=x-a(a为常数)与函数y=-2x+b(b为常数)的图象的交点坐标是(2,1),
所以方程组$\left\{\begin{array}{l}{x-y=a}\\{2x+y=b}\end{array}\right.$的解为$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$.
故答案为$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$.

点评 本题考查了一次函数与二元一次方程(组):满足函数解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.自实施《深圳市生活垃圾分类和减量管理办法》以来,深圳生活垃圾分类和减量工作取得了一定的成效,环保部门为了提高宣传实效,随机抽样调查了100户居民8月的生活垃圾量,并绘制成不完整的频数分布直方图,(如图1),并将他们的垃圾分类情况绘制成不完整的扇形统计图,请你根据图中的信息解答下列问题:
(1)请将条形统计图1补充完整;
(2)图2的扇形统计图中,表示“有害垃圾C”所在扇形的圆心角度数为10.8度;
(3)根据统计,8月所抽查的居民产生的生活垃圾总量约为2750kg,则其中为可回收的垃圾约为1320kg.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,已知一条直线过点(0,4),且与抛物线y=$\frac{1}{4}$x2交于A,B两点,其中点A的横坐标是-2.
(1)求这条直线的解析式及点B的坐标;
(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,直线y=-x+1与双曲线y=$\frac{k}{x}$相交于点A(m,2).
(1)求反比例函数的表达式;
(2)画出直线和双曲线的示意图;
(3)过动点P(n,0)且垂于x轴的直线与y=-x+1及双曲线y=$\frac{k}{x}$的交点分别为B和C,当点B位于点C上方时,根据图形,直接写出n的取值范围0<n<2,n<-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,直线l:y=x+2与双曲线C:y=$\frac{k}{x}$相交于A,B两点其中点A的纵坐标为3,点B的纵坐标为-1.
(1)写出双曲线C的表达式;
(2)过动点P(n,0)且垂直于x轴的直线与l和C的交点分别为M,N,当点M位于点N的上方时,写出n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.若代数式5a-3b的值是-2,则代数式2(a-b)+4(2a-b)+3的值等于-4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.张大爷对自己生产的土特产进行试验加工后,分为甲、乙、丙三种不同包装推向市场进行销售,其相关信息如下表:
重量(千克/袋)销售价(元/袋)成本(元/袋)
0.22.52.0
0.3m2.8
0.4n3.5
这三种不同包装的土特产每一种都销售了120千克.
(1)张大爷销售甲种包装的土特产赚了多少钱?
(2)张大爷销售乙、丙这两种包装的土特产总共赚了多少钱?(用含m、n的代数式表示)
(3)当m=3.8,n=4.7时,求张大爷本次销售土特产总共赚了多少钱?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.计算:2$\sqrt{\frac{1}{2}}$+tan60°-2sin45°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知k,m,n都是整数,且$\sqrt{135}$=k$\sqrt{15}$,$\sqrt{450}$=15$\sqrt{m}$,$\sqrt{180}$=6$\sqrt{n}$,请比较k,m,n的大小关系.

查看答案和解析>>

同步练习册答案