精英家教网 > 初中数学 > 题目详情
16.如图,已知△ABC的外接圆O的半径为3,AC=4,则sinB=$\frac{2}{3}$.

分析 作直径AD,连接CD,根据正弦的概念求出∠D的正弦,根据圆周角定理得到∠B=∠D,得到答案.

解答 解:作直径AD,连接CD,
在直角△ADC中,AD=6,AC=4,
sinD=$\frac{AC}{AD}$=$\frac{4}{6}$=$\frac{2}{3}$,
∵∠B=∠D,
∴sinB=$\frac{2}{3}$,
故答案为:$\frac{2}{3}$.

点评 本题考查的是圆周角定理和解直角三角形的知识,正确作出辅助线、构造直角三角形是解题的关键,注意锐角三角函数的概念的运用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.在妇女节前后,某快递总站的快递数量不断增加,每个快递到达总站后都需要进行快递单号的扫描,妇女节当天的早上,快递总站在进行快递单号扫描前,已收到800个未扫描快递,在扫描机开始工作后,仍平均每分钟有10个未扫描快递到达快递总站,扫描机平均每分钟扫描15个快递单号.已知在扫描机开始工作a分钟内只用一台扫描机工作.在妇女节当天未扫描的快递个数y(个)与扫描机工作时间x(分钟)之间的关系如图所示.
(1)求a的值;
(2)求扫描机工作55分钟时,未扫描的快递个数;
(3)若要在扫描机开始工作30分钟内,让该段时间内所有到达快递总站的未扫描的快递全部都扫描完毕,求在妇女节当天早上只要要让多少台扫描机一起开始工作?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,直线y=-$\frac{4}{3}$x+8与x轴,y轴分别交于点A和B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则△AMO的面积为9.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.解不等式并把解集在数轴上表示出来
(1)3x-1<7-x    
                         
(2)$\frac{1-2x}{3}$≥1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2015次相遇地点的坐标是(  )
A.(2,0)B.(-1,1)C.(-2,1)D.(-1,-1)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.推理填空:完成下列证明:如图,E在△ABC的边AC上,且∠ABF=∠C,AF平分∠BAE交BE于点F,FD∥BC交AC于D.求证:AC-AB=DC.
解:∵FD∥BC
∴∠ADF=∠C两直线平行,同位角相等,
∵∠ABF=∠C
∴∠ABF=∠ADF等量代换
∵AF平分∠BAE
∴∠BAF=∠CAF(角平分线的定义)
在△BAF和△DAF中
$\left\{\begin{array}{l}{∠BAF=∠DAF}\\{∠ABF=∠ADF}\\{\;}\end{array}\right.$
AF=AF
∴△BAF≌△DAFAAS
∴AB=AD
∵AC-AD=DC
∴AC-AB=DC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线 m,垂足分别为点D、E.证明:DE=BD+CE.
(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=120°.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试证明FD=FE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在平面直角坐标系中,直线AB与直线AC分别交于x轴,y轴于点B、C、A,过点B作BD⊥AC于D,交y轴与点E,若∠BAC=45°,点B、C、E的坐标分别B(-3,0)、C(2,0)、E(0,1),过点A作AF∥x轴,交OD的延长线于点F,连接CF,在平面直角坐标系中,是否存在点K,使△OKF与△OCF全等?若存在,求出点K的坐标并画出图形;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列四个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC;④OE=OD.从上述四个条件中,选取两个条件,不能判定△ABC是等腰三角形的是(  )
A.①②B.①③C.③④D.②③

查看答案和解析>>

同步练习册答案