精英家教网 > 初中数学 > 题目详情
如图,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.
(1)△ABE与△DCA是否相似?请加以说明.
(2)求m与n的函数关系式,直接写出自变量n的取值范围.
(3)当BE=CD时,分别求出线段BD、CE、DE的长,并通过计算验证BD2+CE2=DE2
(4)在旋转过程中,(3)中的等量关系BD2+CE2=DE2是否始终成立,若成立,请证明;若不成立,请说明理由.
分析:(1)根据∠BAE=∠BAD+45°,∠CDA=∠BAD+45°得到∠BAE=∠CDA,再根据∠B=∠C=45°得到△ABE∽△DCA;
(2)根据△ABE∽△DCA得到
BE
AC
=
BA
CD
,然后代入AC和AB即可得到两个变量之间的关系;
(3)当BE=CD,即m=n时,由m=
2
n
,得到m、n的值,然后表示出DE、BD和CE,平方后即可证得结论;
(4)将△ACE绕点A顺时针旋转90°至△ABH的位置,利用旋转不变性得到CE=HB,AE=AH,∠ABH=∠C=45°,旋转角∠EAH=90°.然后连接HD,证得△EAD≌△HAD,从而得到DH=DE,再根据
∠HBD=∠ABH+∠ABD=90°,利用勾股定理得到BD2+HB2=DH2,从而证得BD2+CE2=DE2
解答:解:(1)△ABE与△DCA会相似,
理由是∵∠BAE=∠BAD+45°,∠CDA=∠BAD+45°
∴∠BAE=∠CDA   …(2分)
又∵∠B=∠C=45°
∴△ABE∽△DCA;

(2)∵△ABE∽△DCA,
BE
AC
=
BA
CD

由题意可知CA=BA=
2

m
2
=
2
n

∴m=
2
n
(1<n<2);

(3)当BE=CD,即m=n时,
由m=
2
n
,得m=n=
2

∴DE=BE+CD-BC=2
2
-2,
∴BD=BE-DE=2-
2
=CE,
∵BD2+CE2=2BD2=2(2-
2
2=12-8
2
,DE2=(2
2
-2)2=12-8
2

∴BD2+CE2=DE2 

(4)成立
证明:如图,将△ACE绕点A顺时针旋转90°至△ABH的位置,则CE=HB,AE=AH,
∠ABH=∠C=45°,旋转角∠EAH=90°.
连接HD,在△EAD和△HAD中
∵AE=AH,∠HAD=∠EAH-∠FAG=45°=∠EAD,AD=AD.
∴△EAD≌△HAD   
∴DH=DE
又∵∠HBD=∠ABH+∠ABD=90° 
∴BD2+HB2=DH2
即BD2+CE2=DE2
点评:本题考查了相似三角形及全等三角形的判定和性质,另外还涉及到了勾股定理和旋转的性质,综合性比较强,难度中等偏上.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在同一平面内,有三条直线a、b、c,且a∥b,如果直线a与c交于点O,那么直线c与b的位置关系是
相交

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在同一平面内,将两个全等的等腰直角三角形ABC和ADE摆放在一起,A为公共顶点,∠BAC=∠ADE=90°,若△ABC固定不动,△ADE绕点A旋转,AD、AE与边BC的交点分别为F、G(点G不与点B重合,点F不与点C重合).
(1)图中共有
 
对相似三角形.(△ABC∽△DEA外)
(2)请选其中的一对说明理由.
(3)若等腰直角三角形的斜边长为2,BF=m,CG=n、求m与n的函数关系式,并直接写出自变量n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

按要求作图:
如图,在同一平面内有四个点A、B、C、D.
①画射线CD;②画直线AD;③连结AB;④直线BD与直线AC相交于点O.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在同一平面内有A、B、C三个点,根据要求画图:
(1)作射线AB,直线AC,连接BC;
(2)过B作AC的垂线段BD,垂足为D;
(3)延长线段CB.

查看答案和解析>>

同步练习册答案