精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,在正方形ABCD的边CB的延长线上取点F,连接AF,在AF上取点G,使得AG=AD,连接DG,过点A作AE⊥AF,交DG于点E.
(1)若正方形ABCD的边长为4,且tan∠FAB=
12
,求FG的长;
(2)求证:AE+BF=AF.
分析:(1)由正方形ABCD的边长为4,在Rt△ABF中,由tan∠FAB=
1
2
,即可求得BF的长,然后由勾股定理求得AF的长,又由AG=AD,即可求得FG的长;
(2)首先在BC上去截取BM=AE,然后证得△AGE≌△BAM,由全等三角形的对应角相等、同角的余角相等,即可求得∠FAM=∠AMB,继而证得AE+BF=AF.
解答:解:(1)∵四边形ABCD是正方形,且边长为4,
∴∠ABF=90°,AB=AD=4,
∵在Rt△ABF中,tan∠FAB=
1
2

FB
AB
=
1
2

∴FB=
1
2
×4=2,
∴AF=
AB2+BF2
=2
5

∵AG=AD=4,
∴FG=AF-AG=2
5
-4;
精英家教网
(2)在BC上去截取BM=AE,
∵AG=AD,AB=AD,
∴AG=AB,
∵AE⊥AF,
∴∠EAG=∠ABM=90°,
在△AGE和△BAM中,
AG=BA
∠GAE=∠ABM
AE=BM

∴△AGE≌△BAM,
∴∠AMB=∠AEG,∠BAM=∠AGD,
∵AG=AD,
∴∠AGD=∠ADG,
∴∠BAM=∠ADG,
∵∠BAD=90°,
∴∠FAB+∠BAE=∠BAE+∠EAD=90°,
∴∠FAB=∠EAD,
∴∠AEG=∠EAD+∠ADG=∠FAB+∠BAM=∠FAM,
∴∠FAM=∠AMB,
∴AF=FM=BF+BM=BF+AE.
点评:此题考查了正方形的性质、直角三角形的性质、等腰三角形的性质以及全等三角形的判定与性质等知识.此题综合性较强,难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,在正方形ABCD中,AB=2,两条对角线相交于点O,以OB、OC为邻边作第1个正方形OBB1C,对角线相交于点A1;再以A1B1、A1C为邻边作第2个正方形A1B1C1C对角线相交于点O1;再以O1B1、O1C1为邻边作第3个正方形O1B1B2C1,…依此类推.
(1)求第1个正方形OBB1C的边长a1和面积S1
(2)写出第2个正方形A1B1C1C和第3个正方形的边长a2,a3和面积S2,S3
(3)猜想第n个正方形的边长an和面积Sn.(不需证明).
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在正方形ABCD中,DE=EC,AD=4FD,则tan∠FBE=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•凤阳县模拟)如图所示,在正方形ABCD的对角线上取点E,使得∠BAE=15°,连结AE,CE.延长CE到F,连结BF,使得BC=BF.若AB=1,则下列结论:①AE=CE;②F到BC的距离为
2
2
;③BE+EC=EF;④S△AED=
1
4
+
2
8
;⑤S△EBF=
3
12
.其中正确的是
①③⑤
①③⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在正方形ABCD中,△PCB和△QCD是正三角形,BP与QD相交于M,QC与PB相交于F,请你猜想QM与PM的大小关系?并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在正方形网格上有一个△ABC.
(1)画出△ABC关于直线MN的对称图形△A1B1C1
(2)画出△ABC关于点O的对称图形△A2B2C2
(3)若网格上的最小正方形边长为1,求△ABC的面积;
(4)△A2B2C2能否由△A1B1C1平移得到?能否由△A1B1C1旋转得到?这两个三角形(指△A1B1C1与△A2B2C2)存在什么样的图形变换关系?

查看答案和解析>>

同步练习册答案