精英家教网 > 初中数学 > 题目详情
如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)写出数轴上点B表示的数
 
,点P表示的数
 
(用含t的代数式表示);
(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?
(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.
考点:一元一次方程的应用,数轴,两点间的距离
专题:
分析:(1)根据已知可得B点表示的数为8-14;点P表示的数为8-5t;
(2)点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC-BC=AB,列出方程求解即可;
(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.
解答:解:(1)∵点A表示的数为8,B在A点左边,AB=14,
∴点B表示的数是8-14=-6,
∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,
∴点P表示的数是8-5t.
故答案为:-6,8-5t;   
(2)设点P运动x秒时,在点C处追上点Q,

则AC=5x,BC=3x,
∵AC-BC=AB,
∴5x-3x=14,
解得:x=7,
∴点P运动7秒时追上点Q.
(3)线段MN的长度不发生变化,都等于7;理由如下:
∵①当点P在点A、B两点之间运动时:

MN=MP+NP=
1
2
AP+
1
2
BP=
1
2
(AP+BP)=
1
2
AB=
1
2
×14=7,
②当点P运动到点B的左侧时:

MN=MP-NP=
1
2
AP-
1
2
BP=
1
2
(AP-BP)=
1
2
AB=7,
∴线段MN的长度不发生变化,其值为7.
点评:本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

若0.000 000 3=3×10x,则x=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

某同学本学期共参加了10次数学测试,其中90分以上有8次,该同学在这10次考试中,出现90分以上的频率是(  )
A、0.20B、0.80
C、0.90D、8

查看答案和解析>>

科目:初中数学 来源: 题型:

在平行四边形ABCD中,AC与BD相交于点O,图中共有全等三角形(  )
A、1对B、2对C、3对D、4对

查看答案和解析>>

科目:初中数学 来源: 题型:

下列说法中,正确的是(  )
A、一组对边平行的四边形是平行四边形
B、有一个角是直角的四边形是矩形
C、四条边相等的四边形是菱形
D、对角线互相垂直平分的四边形是正方形

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图,已知点C在线段AB上,线段AC=12,BC=8.点M,N分别是AC,BC的中点,求线段MN的长度;
(2)根据(1)中的计算结果,设AC+BC=a,你能猜想出MN的长度吗?请用一句简洁的语言表述你的发现;
(3)请以“角的平分线”为背景出一道与(1)相同性质的题目.并直接写待求的结果(要求画出相关的图形)
(4)若把(1)中的“点C在线段AB上”改为“点C在直线AB上”,其它条件均不变,求线段MN的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)(-
1
2
a2b)
3
•(-3ab22
(2)(12x2y-8xy2)÷4xy
(3)-10
1
6
×9
5
6

(4)1-
x-y
x+2y
÷
x2-y2
x2+4xy+4y2

查看答案和解析>>

科目:初中数学 来源: 题型:

学完“判定两个直角三角形全等”后老师给学生布置了这样一道题:
判断:有两边和其中一边上的高对应相等的两个三角形全等.
这个命题是真命题还是假命题,若是真命题,请给出证明;若是假命题,请举出反例.
小彬经过思考得出结论:真命题,并给出了证明如下:
如图,△ABC与△A′B′C′,BC=B′C′,AD⊥BC,A′D′⊥B′C′,且AD=A′D′.
求证:△ABC≌△A′B′C′
证明:∵AD⊥BC,A′D′⊥B′C′
∴∠ADB=∠A′D′B′=90°
又AB=A′B′,AD=A′D′
∴Rt△ADB≌Rt△A′D′B′(HL)
∴∠B=∠B′
在△ABC与△A′B′C′中
AB=A′B′
∠B=∠B′
BC=B′C′
∴△ABC≌△A′B′C′(SAS)
你认为小彬的结论正确吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

元宵节,妈妈正在煮汤圆,爸爸给小明出了一道数学题:妈妈先后两次往同一锅里放入芝麻馅和豆沙馅的汤圆.第一次,放入汤圆若干只,此时,从锅中随机取出一只,是芝麻馅的汤圆的概率为
1
3
;第二次,放入5只芝麻馅和1只豆沙馅的汤圆,这时随机取出一只,是芝麻馅的汤圆的概率为
1
2
,问锅中共有汤圆多少只?
(1)请帮小明解答以上问题;
(2)煮熟后,妈妈从锅中盛出6只芝麻馅和7只豆沙馅的汤圆之后,要小明自己盛剩下的汤圆,若小明从锅中随机盛出2只汤圆,用列表法或画树形图的方法求“小明盛出芝麻馅和豆沙馅的恰好各1只”(记作事件A)的概率.

查看答案和解析>>

同步练习册答案