| 解:(1)证明:过点D作DP⊥BC,于点P,过点A作AQ⊥BC于点Q, ∵∠C=∠B=60°, ∴CP=BQ= 又∵ADPQ是矩形,AD=PQ,故BC=2AD, 由已知,点M是BC的中点,BM=CM=AD=AB=CD, 即⊿MDC中,CM=CD,∠C=60°,故⊿MDC是等边三角形; (2)⊿AEF的周长存在最小值,理由如下: 连接AM,由(1)平行四边形ABMD是菱形,⊿MAB,⊿MAD和⊿MC′D′是等边三角形, ∠BMA=∠BME+∠AME=60°,∠EMF=∠AMF+∠AME=60°, ∴∠BME=∠AMF, 在⊿BME与⊿AMF中,BM=AM,∠EBM=∠FAM=60°, ∴⊿BME≌⊿AMF(ASA), ∴BE=AF,ME=MF,AE+AF=AE+BE=AB, ∵∠EMF=∠DMC=60°,故⊿EMF是等边三角形,EF=MF, ∵MF的最小值为点M到AD的距离 ⊿AEF的周长=AE+AF+EF=AB+EF, ⊿AEF的周长的最小值为2+ |
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
| 3 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com