精英家教网 > 初中数学 > 题目详情

感知:如图1,在正方形ABCD中,E是AB上一点,将点E绕点C顺时针旋转90°到点F,易知△CEB≌△CFB.
探究:如图2,在图1中的基础上作∠ECF的角平分线CG,交AD于点G,连接EG,求证:EG=BE+GD.
应用:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC.E是AB上一点,且∠DCE=45°,AD=6,DE=10,求直角梯形ABCD的面积.

探究:证明:∵根据旋转的性质得:△EBC≌△FDC,
∴CE=CF,DF=BE,
∵CG平分∠ECF,
∴∠ECG=∠FCG,
在△ECG和△FCG中

∴△ECG≌△FCG(SAS),
∴EG=GF,
∵GF=DG+DF=DG+BE,
∴EG=BE+GD;

应用:
解:如图3,过C作CH⊥AD于H,旋转△BCE到△CHM,
则∠A=∠B=∠CHA=90°,
∵AB=BC,
∴四边形ABCH是正方形,
∵∠DCE=45°,AH=BC,
∴∠DCH+∠ECB=90°-45°=45°,
∵由已知证明知:△EBC≌△MHC,
∴∠ECB=∠MCH,
∴∠DCH+∠MCH=45°,
∴CD平分∠ECM,
∴由探究证明知:DE=BE+DH,
在Rt△AED中,DE=10,AD=6,由勾股定理得:AE=8,
设BE=x,则BC=AB=x+8=AH,
即x+8=6+10-x,
x=4,
BE=4,
AB=4+8=12,BC=AB=12,
∴梯形ABCD的面积是×(6+12)×12=108.
分析:探究:求出CE=CF,DF=BE,∠ECG=∠FCG,证△ECG≌△FCG,推出EG=GF即可;
应用:过C作CH⊥AD于H,旋转△BCE到△CHM,推出四边形ABCH是正方形,CD平分∠ECM,由探究证明知:DE=BE+DH,
在Rt△AED中,DE=10,AD=6,由勾股定理求出AE=8,设BE=x,根据BC=AB=x+8=AH得出x+8=6+10-x,求出x=4即可.
点评:本题考查了正方形性质,全等三角形的性质和判定,三角形的内角和定理的应用,主要考查学生综合运用性质进行推理的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1、2是两个相似比为1:
2
的等腰直角三角形,将两个三角形如图3放置,小直角三角形的斜边与大直角三角形的一直角边重合.
(1)在图3中,绕点D旋转小直角三角形,使两直角边分别与AC、BC交于点E,F,如图4.求证:AE2+BF2=EF2
(2)若在图3中,绕点C旋转小直角三角形,使它的斜边和CD延长线分别与AB交于点E、F,如图5,此时结论AE2+BF2=EF2是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
精英家教网
精英家教网
(3)如图6,在正方形ABCD中,E、F分别是边BC、CD上的点,满足△CEF的周长等于正方形ABCD的周长的一半,AE、AF分别与对角线BD交于M、N,试问线段BM、MN、DN能否构成三角形的三边长?若能,指出三角形的形状,并给出证明;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,圆在正方形的内部沿着正方形的四条边运动一周,并且始终保持与正方形的边相切.
(1)在图中,把圆运动一周覆盖正方形的区域用阴影表示出来;
(2)当圆的直径等于正方形的边长一半时,该圆运动一周覆盖正方形的区域的面积是否最大?并说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面材料:
镜面对称:镜前的物体与其在镜中的像关于镜面对称
①如图1,如果桌面上有一个用火柴摆出的等式,而你从前方墙上的镜子中看见的是如下式子:
那么你能立即对桌面上等式的正确性做出判断吗?
 

②如图2,镜前有黑、白两球,据说如果你用白球瞄准红球在镜中的像,击出的白球就能经镜面反弹击中黑球.你能说出其中的道理吗?
 

如果你有两面互相垂直的镜子,你想让击出的白球先后经两个镜面反弹,然后仍能击 中黑球,那么你应该怎样瞄准?请仿照图3画出白球的运动的路线图.
③请利用轴对称解决下面问题:
如图4,在正方形ABCD中,AB=4cm,点P是AC上一动点,E是DC的中点,PD+PE的最小值为
 
cm.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC在正方形网格中(每个小方格都是边长为1的正方形),请解答下列问题:
(1)将△ABC沿某个方向平移后得△EDF,点B的对应点为点D(如图),请画出EDF;
(2)连接BE、BD,求四边形BEFD的面积.

查看答案和解析>>

同步练习册答案