精英家教网 > 初中数学 > 题目详情

Rt△ABC中,∠C=90°,AC=6,BC=8,P为△ABC所在平面上一点,PA=PB,且S△PBC=S△ABC,求PA的长.

解:∵∠C=90°,AC=6,BC=8,
∴AB===10,
∵S△PBC=S△ABC
∴点P到BC的距离等于AC的长度,为6,
①如图1,点A、P在BC的同侧时,∵点A、P到BC的距离相等,
∴PA∥BC,
∴∠PAD=∠ABC,
过点P作PD⊥AB于点D,
∵PA=PB,
∴AD=AB=×10=5,
∵cos∠PAD==,cos∠ABC===
=
解得PA=
②如图2,点A、P在BC异侧时,过点P作PD⊥AB于D,
∵PA=PB,
∴AD=AB=×10=5,
过点D作DE∥BC,过点P作PE⊥BC相交于点E,
∵点D是AB的中点,
∴点E到BC的距离为AC=×6=3,
∴PE=3+6=9,
∵∠BAC+∠ADE=90°,∠ADE+∠PDE=90°,
∴∠PDE=∠BAC,
∵cos∠PDE==,cos∠BAC===
=
解得PD=
在Rt△APD中,PA===
综上所述,PA的长为
分析:利用勾股定理列式求出AB的长度,根据等底等高的三角形面积相等可得点P到BC的距离等于点A到BC的距离相等,然后分①点A、P在BC的同侧时,PA∥BC,过点P作PD⊥AB于点D,根据等腰三角形三线合一的性质可得点D是AB的中点,然后求出AD的长,再利用∠PAD的余弦值列式求解即可;②点A、P在BC异侧时,过点P作PD⊥AB于D,根据等腰三角形三线合一的性质可得点D是AB的中点,过点D作DE∥BC,过点P作PE⊥BC相交于点E,先求出PE的长度,再根据同角的余角相等求出∠PDE=∠BAC,然后利用∠PDE的余弦值列式求解即可得到PD,在Rt△APD中,利用勾股定理列式进行计算即可得解.
点评:本题考查了等腰三角形三线合一的性质,三角形的面积勾股定理,锐角三角函数,根据等底等高的三角形的面积相等得到点A、P到BC的距离相等是解题的关键,要注意分两种情况讨论求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足为D,交AB于点E.又点F在DE的精英家教网延长线上,且AF=CE.求证:四边形ACEF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠BAC=90°,点D、E、F分别是三边的中点,且CF=3cm,则DE=
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,AC⊥BC,CD⊥AB于D,AC=8,BC=6,则AD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB上,精英家教网点G在边BC上.
(1)求证:AE=BF;
(2)若BC=
2
cm,求正方形DEFG的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠C=90°,D为AB的中点,DE⊥AB,AB=20,AC=12,则四边形ADEC的面积为
 

查看答案和解析>>

同步练习册答案