精英家教网 > 初中数学 > 题目详情
如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=﹣1.

(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.
解:(1)根据题意,设抛物线的解析式为:
∵点A(1,0),B(0,3)在抛物线上,
,解得:
∴抛物线的解析式为:
(2)①∵四边形OMPQ为矩形,
∴OM=PQ,即,整理得:t2+5t﹣3=0,
解得<0,舍去)。
∴当秒时,四边形OMPQ为矩形。
②Rt△AOB中,OA=1,OB=3,∴tanA=3。
若△AON为等腰三角形,有三种情况:
(I)若ON=AN,如答图1所示,

过点N作ND⊥OA于点D,
则D为OA中点,OD=OA=
∴t=
(II)若ON=OA,如答图2所示,

过点N作ND⊥OA于点D,
设AD=x,则ND=AD•tanA=3x,OD=OA﹣AD=1﹣x,
在Rt△NOD中,由勾股定理得:OD2+ND2=ON2
,解得x1=,x2=0(舍去)。
∴x=,OD=1﹣x=
∴t=
(III)若OA=AN,如答图3所示,

过点N作ND⊥OA于点D,
设AD=x,则ND=AD•tanA=3x,
在Rt△AND中,由勾股定理得:ND2+AD2=AN2
,解得x1=,x2=(舍去)。
∴x=,OD=1﹣x=1﹣
∴t=1﹣
综上所述,当t为秒、秒,1﹣秒时,△AON为等腰三角形。
(1)用待定系数法求出抛物线的顶点式解析式。
(2)①当四边形OMPQ为矩形时,满足条件OM=PQ,据此列一元二次方程求解。
②△AON为等腰三角形时,可能存在三种情形,分类讨论,逐一计算。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在等边△ABC中,AB=3,D、E分别是AB、AC上的点,且DE∥BC,将△ADE沿DE翻折,与梯形BCED重叠的部分记作图形L.

(1)求△ABC的面积;
(2)设AD=x,图形L的面积为y,求y关于x的函数解析式;
(3)已知图形L的顶点均在⊙O上,当图形L的面积最大时,求⊙O的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(-3,0)。

(1)求点B的坐标;
(2)已知,C为抛物线与y轴的交点。
①若点P在抛物线上,且,求点P的坐标;
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+bx﹣4经过A(﹣8,0),B(2,0)两点,直线x=﹣4交x轴于点C,交抛物线于点D.

(1)求该抛物线的解析式;
(2)点P在抛物线上,点E在直线x=﹣4上,若以A,O,E,P为顶点的四边形是平行四边形,求点P的坐标;
(3)若B,D,C三点到同一条直线的距离分别是d1,d2,d3,问是否存在直线l,使?若存在,请直接写出d3的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线的顶点坐标是【   】
A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知:如图①,直线与x轴、y轴分别交于A、B两点,两动点D、E分别从A、B两点同时出发向O点运动(运动到O点停止);对称轴过点A且顶点为M的抛物线(a<0)始终经过点E,过E作EG∥OA交抛物线于点G,交AB于点F,连结DE、DF、AG、BG.设D、E的运动速度分别是1个单位长度/秒和个单位长度/秒,运动时间为t秒.

(1)用含t代数式分别表示BF、EF、AF的长;
(2)当t为何值时,四边形ADEF是菱形?判断此时△AFG与△AGB是否相似,并说明理由;
(3)当△ADF是直角三角形,且抛物线的顶点M恰好在BG上时,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线经过点A(,0)和点B(1,),与x轴的另一个交点为C.
(1)求抛物线的函数表达式;
(2)点D在对称轴的右侧,x轴上方的抛物线上,且∠BDA=∠DAC,求点D的坐标;
(3)在(2)的条件下,连接BD,交抛物线对称轴于点E,连接AE.
①判断四边形OAEB的形状,并说明理由;
②点F是OB的中点,点M是直线BD的一个动点,且点M与点B不重合,当∠BMF=∠MFO时,请直接写出线段BM的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图象如图所示,反比例函数与一次函数在同一平面直角坐标系中的大致图象是
 
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(2013年四川绵阳4分)二次函数y=ax2+bx+c的图象如图所示,给出下列结论:
①2a+b>0;②b>a>c;③若﹣1<m<n<1,则m+n<;④3|a|+|c|<2|b|.
其中正确的结论是   (写出你认为正确的所有结论序号).

查看答案和解析>>

同步练习册答案