精英家教网 > 初中数学 > 题目详情
已知正方形ABCD,边长为3,对角线AC,BD交点O,直角MPN绕顶点P旋转,角的两边分别与线段AB,AD交于点M,N(不与点B,A,D重合),设DN=x,四边形AMPN的面积为y,在下面情况下,y随x的变化而变化吗?若不变,请求出面积y的值;若变化,请求出y与x的关系式。
(1)如图1,点P与点O重合;
(2)如图2,点P在正方形的对角线AC上,且AP=2PC;
(3)如图3,点P在正方形的对角线BD上,且DP=2PB。
解:(1)当x变化时,y不变.如图1,
(2)当x变化时,y不变,
如图2,作OE⊥AD于E,OF⊥AB于F,
∵AC是正方形ABCD的对角线,
∴∠BAD=90°,AC平分∠BAD,
∴四边形AFPE是矩形,PF=PE,
∴四边形AFPE是正方形,
∵∠ADC=90°,
∴PE∥CD,
∴△APE∽△ACD,

∵AP=2PC,CD=3,

∴PE=2,
∵∠FPE=90°,∠MPN=90°,
∴∠FPN+∠NPE=90°,∠FPN+∠MPF=90°,
∴∠NPE=∠MPF,
∵∠PEN=∠PFM=90°,PE=PF,
∴△PEN≌△PFM,
(3)x变化,y变化,
如图3,,0<x<3。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,已知正方形ABCD中,对角线AC、BD交于O点,过O点作OE⊥OF分别交DC于E,交BC于F,∠FEC的角平分线EP交直线AC于P.
(1)①求证:OE=OF;
②写出线段EF、PC、BC之间的一个等量关系式,并证明你的结论;
(2)如图2,当∠EOF绕O点逆时针旋转一个角度,使E、F分别在CD、BC的延长线上,请完成图形并判断(1)中的结论①、②是否分别成立?若不成立,写出相应的结论(所写结论均不必证明).
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的边长与Rt△EFG的直角边EF的长均为4cm,FG=8cm,AB与FG在同一条直线l上、开始时点F与点B重合,让Rt△EFG以每秒1cm速度在直线l上从右往左移动,精英家教网直至点G与点B重合为止.设x秒时Rt△EFG与正方形ABCD重叠部分的面积记为ycm2
(1)当x=2秒时,求y的值;
(2)求y与x之间的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知正方形ABCD的边长为4厘米,E,F分别为边DC,BC上的点,BF=1厘米,CE=2厘米,BE,DF相交于点G,求四边形CEGF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•惠山区一模)阅读与证明:
如图,已知正方形ABCD中,E、F分别是CD、BC上的点,且∠EAF=45°,

求证:BF+DE=EF.
分析:证明一条线段等于另两条线段的和,常用“截长法”或“补短法”,将线段BF、DE放在同一直线上,构造出一条与BF+DE相等的线段.如图1延长ED至点F′,使DF′=BF,连接A F′,易证△ABF≌△ADF′,进一步证明△AEF≌△AEF′,即可得结论.
(1)请你将下面的证明过程补充完整.
证明:延长ED至F′,使DF′=BF,
∵四边形ABCD是正方形
∴AB=AD,∠ABF=∠ADF′=90°,
∴△ABF≌△ADF’(SAS)
应用与拓展:如图建立平面直角坐标系,使顶点A与坐标原点O重合,边OB、OD分别在x轴、y轴的正半轴上.
(2)设正方形边长OB为30,当E为CD中点时,试问F为BC的几等分点?并求此时F点的坐标;
(3)设正方形边长OB为30,当EF最短时,直接写出直线EF的解析式:
y=-x+30
2
y=-x+30
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD边长为2,E、F、G、H分别为各边上的点,且AE=BF=CG=DH.
(1)求证:△EBF≌△FCG;
(2)设四边形EFGH的面积为s,AE为x,求s与x的函数解析式,并写出x的取值范围;
(3)当x为何值时,正方形EFGH的面积最小?最小值是多少?

查看答案和解析>>

同步练习册答案