问题探究
已知AB∥CD,点P为平面内一点,试探究∠APC,∠PAB,∠PCD之间的数量关系.

探究展示
当P点在直线AB,CD之间,如图(1)的位置时,小王同学给出如下正确的解法.
解:
∠PAB+∠PCD+∠APC=360°.理由如下:
过点P作PE∥AB,因为AB∥CD,所以PE∥CD.(依据1)
所以∠PAB+∠APE=180°,∠PCD+∠CPE=180°(依据2)
所以∠PAB+∠APE+∠PCD+∠CPE=360°
即∠PAB+∠PCD+∠APC=360°
回顾反思
在上述推理过程中,“依据1”和“依据2”分别是指:
依据1:
;
依据2:
.
类比探究
当点P在如图(2)所示的位置时,请类比小王同学的方法写出∠APC,∠PAB,∠PCD之间的数量关系,并说明理由.
拓展延伸
当点P在直线AB,CD外,如图(3),如图(4)所示的位置时,请分别直接写出∠APC,∠PAB,∠PCD之间的数量关系.
在如图(3)中,
;
在如图(4)中,
.