精英家教网 > 初中数学 > 题目详情

如图,双曲线y=数学公式经过四边形OABC的顶点A、C,∠B=90°,OC平分OA与x轴的夹角,AB∥x轴,且S四边形OABC=2,将△ABC沿AC翻折后得△AB′C,B′点落在OA上,则k=________.

2
分析:延长BC,交x轴于点D,设点C(x,y),AB=a,由角平分线的性质得,CD=CB′,则△OCD≌△OCB′,再由翻折的性质得,BC=B′C,根据反比例函数的性质,可得出S△OCD=k,则S△OCB′=k,由AB∥x轴,得点A(x-a,2y),由题意得2y(x-a)=k,从而得出三角形ABC的面积等于k,根据S四边形OABC=2,即可得出答案.
解答:延长BC,交x轴于点D,
设点C(x,y),AB=a,
∵OC平分OA与x轴正半轴的夹角,
∴CD=CB′,△OCD≌△OCB′,
再由翻折的性质得,BC=B′C,
∴BD=2DC,
∵双曲线y=(x>0)经过四边形OABC的顶点A、C,
∴S△OCD=k,
∴S△OCB′=k,
∵AB∥x轴,BD=2DC,
∴点A(x-a,2y),
∴2y(x-a)=k,
∴xy-ay=k,
∵xy=k,
∴ay=k,
∴S△ABC=ay=k,
∴SOABC=S△OCB′+S△ABC+S△ABC=k+k+k=2,
解得:k=2.
故答案为:2.
点评:此题主要考查了反比例函数的综合应用,关键是根据翻折得到BC=B′C=CD,进而表示出A点的坐标,表示出S△ABC=k.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,双曲线经过四边形OABC的顶点  A、C,∠ABC= 900,OC平分OA与x轴正半轴的夹角.  AB//x轴,将∆ABC沿AC翻折后得△AB’C,点B’落在 OA上,则四边形OABC的面积是______

 

查看答案和解析>>

科目:初中数学 来源:2012-2013学年湖北省鄂州市第三中学八年级下学期期中考试数学试卷(带解析) 题型:单选题

如图,双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C,若点A的坐标为(-6,4),则△AOC的面积为

A.12B.6C.9D.4

查看答案和解析>>

科目:初中数学 来源:2013届浙江省杭州市亭趾实验学校九年级上期中考试数学试卷(带解析) 题型:填空题

如图,双曲线经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与轴正半轴的夹角,AB∥轴,将△ABC沿AC翻折后得到△AB'C,B'点落在OA上,则四边形OABC的面积是 _________.

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(江苏扬州卷)数学(解析版) 题型:填空题

如图,双曲线经过Rt△OMN斜边上的点A,与直角边MN相交于点B,已知OA=2AN,△OAB的面积为5,则k的值是 ▲ 

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省无锡市新区九年级下学期期中考试数学卷(解析版) 题型:填空题

如图,双曲线经过矩形QABC的边BC的中点E,交AB于点D。若梯形ODBC的面积为3,则双曲线的解析式为  ▲

 

查看答案和解析>>

同步练习册答案