精英家教网 > 初中数学 > 题目详情

如图,由l个长、宽分别为a、b的矩形,2个边长为a的正方形拼接成矩形ABCD,根据题中所提供的数据,请你写出其中一个代数恒等式:________.

a(2a+b)=2a2+ab
分析:根据图示可看出整个图形的面积是由两个边长为a的正方形和一个个长为a宽为b的小长方形组成,所以用它的面积的两种求法作为相等关系即可.
解答:一个长方形和2个正方形的面积为:2a2+ab,整个长方形的面积为:a(2a+b),
∴等式为:a(2a+b)=2a2+ab.
故答案为:a(2a+b)=2a2+ab.
点评:主要考查了分解因式与几何图形之间的联系,从几何的图形来解释分解因式的意义.解此类题目的关键是正确的分析图列,找到组成图形的各个部分,并用面积的两种求法作为相等关系列式子.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、小刚同学动手剪了如图①所示的正方形与长方形纸片若干张.
观察与操作:
(1)他拼成如图②所示的正方形,根据四个小纸片的面积之和等于大正方形的面积,得到:a2+2ab+b2=(a+b)2,验证了完全平方公式;即:多项式  a2+2ab+b2 分解因式后,其结果表示正方形的长(a+b)与宽(a+b)两个整式的积.
(2)当他拼成如图③所示的矩形,由面积相等又得到:a2+3ab+2b2=(a+2b)(a+b),即:多项式 a2+3ab+2b2 分解因式后,其结果表示矩形的长(a+2b)与宽(a+b)两个整式的积.
问题解决:
(1)请你依照小刚的方法,利用拼图分解因式:a2+4ab+3b2.(画图说明,并写出其结果)
(2)试猜想面积是2a2+5ab+3b2的矩形,其长与宽分别是多少?(画图说明,并写出其结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

小刚同学动手剪了如图①所示的正方形与长方形纸片若干张.观察与操作:
精英家教网
(1)他拼成如图②所示的正方形,根据四个小纸片的面积之和等于大正方形的面积,得到:(a+b)2=a2+2ab+b2,验证了完全平方公式;即多项式a2+2ab+b2分解因式后,其结果表示正方形的长(a+b)与宽(a+b)两个整式的积.
(2)当他拼成如图③所示的矩形,由面积相等又得到:a2+3ab+2b2=(a+2b)(a+b),即:多项式a2+3ab+2b2分解因式后,其结果表示矩形的长(a+2b)与宽(a+b)两个因式的积.利用上述纸片,
解决问题:
①请你依照小刚的方法,利用拼图把a2+4ab+3b2分解因式(画出图形,并写出其结果)
②探索:面积是2a2+5ab+3b2的矩形其长与宽分别是多少?(画出画形,并写出其结果)
③利用图形面积解释代数恒等式(a-b)2=(a+b)2-4ab(画图,并简要说明)

查看答案和解析>>

科目:初中数学 来源:2013年初中数学单元提优测试卷-完全平方式的背景(带解析) 题型:解答题

小刚同学动手剪了如图①所示的正方形与长方形纸片若干张.观察与操作:

(1)他拼成如图②所示的正方形,根据四个小纸片的面积之和等于大正方形的面积,得到:a2+2ab+b2=(a+b)2,验证了完全平方公式;即:多项式  a2+2ab+b2分解因式后,其结果表示正方形的长(a+b)与宽(a+b)两个整式的积.
(2)当他拼成如图③所示的矩形,由面积相等又得到:a2+3ab+2b2=(a+2b)(a+b),即:多项式 a2+3ab+2b2分解因式后,其结果表示矩形的长(a+2b)与宽(a+b)两个整式的积.
问题解决:
(1)请你依照小刚的方法,利用拼图写出恒等式a2+4ab+3b2.(画图说明,并写出其结果)
(2)试猜想面积是2a2+5ab+3b2的矩形,其长与宽分别是多少?(画图说明,并写出其结果)

查看答案和解析>>

科目:初中数学 来源:2013年初中数学单元提优测试卷-完全平方式的背景(解析版) 题型:解答题

小刚同学动手剪了如图①所示的正方形与长方形纸片若干张.观察与操作:

(1)他拼成如图②所示的正方形,根据四个小纸片的面积之和等于大正方形的面积,得到:a2+2ab+b2=(a+b)2,验证了完全平方公式;即:多项式  a2+2ab+b2分解因式后,其结果表示正方形的长(a+b)与宽(a+b)两个整式的积.

(2)当他拼成如图③所示的矩形,由面积相等又得到:a2+3ab+2b2=(a+2b)(a+b),即:多项式 a2+3ab+2b2分解因式后,其结果表示矩形的长(a+2b)与宽(a+b)两个整式的积.

问题解决:

(1)请你依照小刚的方法,利用拼图写出恒等式a2+4ab+3b2.(画图说明,并写出其结果)

(2)试猜想面积是2a2+5ab+3b2的矩形,其长与宽分别是多少?(画图说明,并写出其结果)

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

小刚同学动手剪了如图①所示的正方形与长方形纸片若干张.观察与操作:
作业宝
(1)他拼成如图②所示的正方形,根据四个小纸片的面积之和等于大正方形的面积,得到:(a+b)2=a2+2ab+b2,验证了完全平方公式;即多项式a2+2ab+b2分解因式后,其结果表示正方形的长(a+b)与宽(a+b)两个整式的积.
(2)当他拼成如图③所示的矩形,由面积相等又得到:a2+3ab+2b2=(a+2b)(a+b),即:多项式a2+3ab+2b2分解因式后,其结果表示矩形的长(a+2b)与宽(a+b)两个因式的积.利用上述纸片,
解决问题:
①请你依照小刚的方法,利用拼图把a2+4ab+3b2分解因式(画出图形,并写出其结果)
②探索:面积是2a2+5ab+3b2的矩形其长与宽分别是多少?(画出画形,并写出其结果)
③利用图形面积解释代数恒等式(a-b)2=(a+b)2-4ab(画图,并简要说明)

查看答案和解析>>

同步练习册答案