精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,点A、B分别在x轴、y轴的正半轴上,OA=4,AB=5,点D在反比例函数(k>0)的图象上,,点P在y轴负半轴上,OP=7.

(1)求点B的坐标和线段PB的长;

(2)当时,求反比例函数的解析式

练习册系列答案
相关习题

科目:初中数学 来源: 题型:


以四边形ABCD的边ABBCCDDA为斜边分别向外侧作等腰直角三角形,直角顶点分别为EFGH,顺次连结这四个点,得四边形EFGH

(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;

  如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);

(2)如图3,当四边形ABCD为一般平行四边形时,

① 求证:HE=HG

② 四边形EFGH是什么四边形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E=  

查看答案和解析>>

科目:初中数学 来源: 题型:


计算:_______

查看答案和解析>>

科目:初中数学 来源: 题型:


中,,有一个锐角为60°,BC=6,若P在直线AC上(不与点A,C重合),且,则CP的长为_______

查看答案和解析>>

科目:初中数学 来源: 题型:


如图1,抛物线的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若三角形AMB为等腰直角三角形,我们把抛物线上A、B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶,点M到线段AB的距离称为碟高。

(1)       抛物线对应的碟宽为________;抛物线对应的碟宽为______;抛物线(a>0)对应的碟宽为________;抛物线对应的碟宽_____;

(2)       若抛物线对应的碟宽为6,且在x轴上,求a的值;

(3)       将抛物线的对应准蝶形记为Fn(n=1,2,3,…),定义F1,F2,…..Fn为相似准蝶形,相应的碟宽之比即为相似比。若Fn与Fn-1的相似比为,且Fn的碟顶是Fn-1的碟宽的中点,现在将(2)中求得的抛物线记为y1,其对应的准蝶形记为F1.

①     求抛物线y2的表达式

② 若F1的碟高为h1,F2的碟高为h2,…Fn的碟高为hn,则hn=_______,Fn的碟宽右端点横坐标为_______;F1,F2,…..Fn的碟宽右端点是否在一条直线上?若是,直接写出改直线的表达式;若不是,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:


化简结果正确的是

A.

 

B.

C.

 

D.

 

查看答案和解析>>

科目:初中数学 来源: 题型:


阅读下面材料:

如图(15),圆的概念:在平面内,线段PA绕它固定的一个端点P旋转一周,另一个端点A所形成的图形叫做圆.

就是说,到某个定点等于定长的所有点在同一个圆上.

圆心在,半径为的圆的方程可以写为:.

如:圆心在,半径为5的圆的方程为:.

(1)填空:

①以为圆心, 1为半径的圆的方程为:                  

②以为圆心, 为半径的圆的方程为:                  

(2)根据以上材料解决以下问题:

如图(16),以为圆心的圆与轴相切于原点,C是⊙B上一点,连接OC,作BD⊥OC垂足为D,延长BD交轴于点E,已知.

①连接EC,证明EC是⊙B的切线;

②在BE上是否存在一点P,使PB=PC=PE=PO,若存在,求P点坐标,并写出以P为圆心,以PB为半径的⊙P的方程;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


近年来,A市民用汽车拥有量持续增长,2009年至2013年该市民用汽车拥有量(单位:万辆)依次为11,13,15,19,x.若这五个数的平均数为16,则x= 

查看答案和解析>>

同步练习册答案