精英家教网 > 初中数学 > 题目详情
(2001•安徽)某工程队要招聘甲、乙两种工人150人,甲、乙两种工种的月工资分别为600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付工资最少?
【答案】分析:设招甲种工人x人,则乙种工人(150-x)人,依题意可列出不等式,求出其解集即可.
解答:解:设招聘甲种工种的工人为x人,则招聘乙种工种的工人为(150-x)人,依题意得:
150-x≥2x解得:x≤50即0≤x≤50(2分)
再设每月所付的工资为y元,则
y=600x+1000(150-x)
=-400x+150000(4分)
∵-400<0,∴y随x的增大而减小
又∵0≤x≤50,∴当x=50时,∴y最小=-400×50+150000=130000(元)
∴150-x=150-50=100(人)
答:甲、乙两种工种分别招聘50,100人时,可使得每月所付的工资最少为130000元.
点评:此题比较简单,解答此题的关键是根据题意列出不等式,再根据“招甲种工人越多,乙种工人越少,所付工资最少”即可求解.
练习册系列答案
相关习题

科目:初中数学 来源:2001年全国中考数学试题汇编《二次函数》(02)(解析版) 题型:解答题

(2001•安徽)某工厂生产的A种产品,它的成本是2元,售价是3元,年销量为100万件,为了获得更好的效益,厂家准备拿出一定的资金做广告;根据统计,每年投入的广告费是x(十万元),产品的年销量将是原销售量的y倍,且y是x的二次函数,它们的关系如表:
x(十万元)12
y11.51.8
(1)求y与x的函数关系式;
(2)如果把利润看成销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元的函数关系式);
(3)如果投入的年广告费为10万元~30万元,问广告费在什么范围内,工厂获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:2001年安徽省中考数学试卷(解析版) 题型:解答题

(2001•安徽)某工厂生产的A种产品,它的成本是2元,售价是3元,年销量为100万件,为了获得更好的效益,厂家准备拿出一定的资金做广告;根据统计,每年投入的广告费是x(十万元),产品的年销量将是原销售量的y倍,且y是x的二次函数,它们的关系如表:
x(十万元)12
y11.51.8
(1)求y与x的函数关系式;
(2)如果把利润看成销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元的函数关系式);
(3)如果投入的年广告费为10万元~30万元,问广告费在什么范围内,工厂获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:2001年全国中考数学试题汇编《不等式与不等式组》(02)(解析版) 题型:解答题

(2001•安徽)某工程队要招聘甲、乙两种工人150人,甲、乙两种工种的月工资分别为600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付工资最少?

查看答案和解析>>

科目:初中数学 来源:2001年安徽省中考数学试卷(解析版) 题型:解答题

(2001•安徽)某工程队要招聘甲、乙两种工人150人,甲、乙两种工种的月工资分别为600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付工资最少?

查看答案和解析>>

同步练习册答案