精英家教网 > 初中数学 > 题目详情
如图,AB是半圆O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC.

(1)求证:BC平分∠PDB;
(2)求证:BC2=AB•BD;
(3)若PA=6,PC=6,求BD的长.
解:(1)证明:连接OC,

∵PD为圆O的切线,∴OC⊥PD。
∵BD⊥PD,∴OC∥BD。∴∠OCB=∠CBD。
∵OC=OB,∴∠OCB=∠OBC。
∴∠CBD=∠OBC,即BC平分∠PBD。
(2)证明:连接AC,
∵AB为圆O的直径,∴∠ACB=90°。
∵∠ACB=∠CDB=90°,∠ABC=∠CBD,∴△ABC∽△CBD。
,即BC2=AB•BD。
(3)∵PC为圆O的切线,PAB为割线,∴PC2=PA•PB,即72=6PB,解得:PB=12。
∴AB=PB-PA=12-6=6。∴OC=3,PO=PA+AO=9。
∵△OCP∽△BDP,∴,即
∴BD=4。
(1)连接OC,由PD为圆O的切线,由切线的性质得到OC垂直于PD,由BD垂直于PD,得到OC与BD平行,利用两直线平行得到一对内错角相等,再由OC=OB,利用等边对等角得到一对角相等,等量代换即可得证。
(2)连接AC,由AB为圆O的直径,利用直径所对的圆周角为直角得到△ABC为直角三角形,根据一对直角相等,以及(1)的结论得到一对角相等,确定出△ABC与△BCD相似,由相似得比例,变形即可得证。
(3)由切割线定理列出关系式,将PA,PC的长代入求出PB的长,由PB﹣PA求出AB的长,确定出圆的半径,由OC与BD平行得到△PCO与△DPB相似,由相似得比例,将OC,OP,以及PB的长代入即可求出BD的长。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

下列命题中是真命题的是(    )
A.经过两点不一定能作一个圆B.经过三点不一定能作一个圆
C.经过四点一定不能作一个圆D.一个三角形有无数个外接圆

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图:P是⊙O的直径BA延长线上一点,PD交⊙O于点C,且PC=OD,如果∠P=24°,则∠DOB=     

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.

(1)在图1中画出△ABC,使△ABC为直角三角形(点C在小正方形的顶点上,画出一个即可);
(2)在图2中画出△ABD,使△ABD为等腰三角形(点D在小正方形的顶点上,画出一个即可).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是
A.3B.4C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知的半径分别为,圆心距,则的位置关系是【   】
A.外离B.外切C.相交D.内切

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知⊙O1的半径为3,⊙O2的半径为r,⊙O1与⊙O2只能画出两条不同的公共切线,且O1O2=5,则⊙O2的半径为r的取值范围是   

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,一辆汽车的背面,有一种特殊形状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB,如图2所示,量得连杆OA长为10cm,雨刮杆AB长为48cm,∠OAB=1200.若启动一次刮雨器,雨刮杆AB正好扫到水平线CD的位置,如图3所示.

(1)求雨刮杆AB旋转的最大角度及O、B两点之间的距离;(结果精确到0.01)
(2)求雨刮杆AB扫过的最大面积.(结果保留π的整数倍)
(参考数据:sin60°=,cos60°=,tan60°=≈26.851,可使用科学计算器)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知圆锥底面半径为5cm,高为12cm,则它的侧面展开图的面积是   cm2

查看答案和解析>>

同步练习册答案