精英家教网 > 初中数学 > 题目详情
求函数y=x2+
1x2
的最小值,较合适的数学方法应该是
 
,最小值为
 
分析:求极值得问题一般应把代数式化为完全平方公式的形式,或通过函数图象解答.
解答:解:要求该函数的最小值,可以运用配方法:即y=(x-
1
x
2+2≥2,则当x=1时,有最小值是2;
故答案为:配方法、2.
点评:此题考查了求函数的最小值的方法.注意x2
1
x2
都是非负数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

甲,乙两位同学对问题“求函数y=x2+
1
x2
的最小值”提出各自的想法.甲说:“可以用配方法,把它配成y=(x+
1
x
)2-2
,所以函数的最小值为-2”.乙说:“我也用配方法,但我配成y=(x-
1
x
)2+2
,最小值为2”.你认为
(填写“甲对”,“乙对”,“甲,乙都对”或“甲乙都不对”)的.你还可以用
法等方法来解决.

查看答案和解析>>

科目:初中数学 来源: 题型:

我们知道,对于二次函数y=a(x+m)2+k的图象,可由函数y=ax2的图象进行向左或向右平移一次、再向上或向下移一次平移得到,我们称函数y=ax2为“基本函数”,而称由它平移得到的二次函数y=a(x+m)2+k为“基本函数”y=ax2的“朋友函数”.左右、上下平移的路径称为朋友路径,对应点之间的线段距离
m2+k2
称为朋友距离.
由此,我们所学的函数:二次函数y=ax2,函数y=kx和反比例函数y=
k
x
都可以作为“基本函数”,并进行向左或向右平移一次、再向上或向下平移一次得到相应的“朋友函数”.
如一次函数y=2x-5是基本函数y=2x的朋友函数,由y=2x-5=2(x-1)-3朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离=
12+32
=
10

(1)探究一:小明同学经过思考后,为函数y=2x-5又找到了一条朋友路径为由基本函数y=2x先向
 
,再向下平移7单位,相应的朋友距离为
 

(2)探究二:已知函数y=x2-6x+5,求它的基本函数,朋友路径,和相应的朋友距离.
(3)探究三:为函数y=
3x+4
x+1
和它的基本函数y=
1
x
,找到朋友路径,并求相应的朋友距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

问题背景:
若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为:s=-x2+
1
2
x
(x>0),利用函数的图象或通过配方均可求得该函数的最大值.
提出新问题:
若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?
分析问题:
若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:y=2(x+
1
x
)
(x>0),问题就转化为研究该函数的最大(小)值了.
解决问题:
借鉴我们已有的研究函数的经验,探索函数y=2(x+
1
x
)
(x>0)的最大(小)值.
(1)实践操作:填写下表,并用描点法画出函数y=2(x+
1
x
)
(x>0)的图象:
x 1/4 1/3 1/2 1 2 3 4
y
17
2
20
3
5 4 5
20
3
17
2
(2)观察猜想:观察该函数的图象,猜想当x=
1
1
时,函数y=2(x+
1
x
)
(x>0)有最
值(填“大”或“小”),是
4
4

(3)推理论证:问题背景中提到,通过配方可求二次函数s=-x2+
1
2
x
(x>0)的最大值,请你尝试通过配方求函数y=2(x+
1
x
)
(x>0)的最大(小)值,以证明你的猜想.〔提示:当x>0时,x=(
x
)2

查看答案和解析>>

科目:初中数学 来源: 题型:

我们知道,假分数可以化为带分数.例如:
8
3
=2+
2
3
=2
2
3
.在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:
x-1
x+1
x2
x-1
这样的分式就是假分式;
3
x+1
2x
x2+1
这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式和的形式).
例如:
x-1
x+1
=
(x+1)-2
x+1
=1-
2
x+1
; 
x2
x-1
=
x2-1+1
x-1
=
(x+1)(x-1)+1
x-1
=x+1
+
1
x-1

(1)将分式
x-1
x+2
化为带分式;
(2)若分式
2x-1
x+1
的值为整数,求x的整数值;
(3)求函数y=
2x2-1
x+1
图象上所有横纵坐标均为整数的点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我们知道,假分数可以化为带分数.例如:
8
3
=2+
2
3
=2
2
3
.在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:
x-1
x+1
x2
x-1
这样的分式就是假分式;
3
x+1
2x
x2+1
这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式和的形式).
例如:
x-1
x+1
=
(x+1)-2
x+1
=1-
2
x+1
; 
x2
x-1
=
x2-1+1
x-1
=
(x+1)(x-1)+1
x-1
=x+1
+
1
x-1

(1)将分式
x-1
x+2
化为带分式;
(2)若分式
2x-1
x+1
的值为整数,求x的整数值;
(3)求函数y=
2x2-1
x+1
图象上所有横纵坐标均为整数的点的坐标.

查看答案和解析>>

同步练习册答案