精英家教网 > 初中数学 > 题目详情

有一石拱桥的桥拱是圆弧形,如下图所示,正常水位下水面宽AB=60m,水面到拱项距离CD=18m,当洪水泛滥时,水面宽MN=32m时,高度为5m的船是否能通过该桥?请说明理由.

解:不能通过.
设OA=R,在Rt△AOC中,AC=30,CD=18,
R2=302+(R-18)2
R2=900+R2-36R+324
解得R=34m
连接OM,在Rt△MOE中,ME=16,
OE2=OM2-ME2即OE2=342-162=900,
∴OE=30,
∴DE=34-30=4,
∴不能通过.
分析:先在Rt△AOC中利用勾股定理求出半径的长度,再利用Rt△OME求出OE的长度,就可以得到DE的长度,也就可以做出判断了.
点评:主要考查勾股定理,是否能通过关键在于求出DE的高度,而DE的高度,只要求出OE也就可以求出.建立数学模型是前提.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、有一石拱桥的桥拱是圆弧形,如下图所示,正常水位下水面宽AB=60m,水面到拱项距离CD=18m,当洪水泛滥时,水面宽MN=32m时,高度为5m的船是否能通过该桥?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网有一石拱桥的桥拱是圆弧形,如下图所示,正常水位下水面宽AB=60米,水面到拱顶距离CD=18米,当洪水泛滥,水面宽MN=32米时是否需要采取紧急措施?请说明理由(当水面距拱顶3米以内时需采取紧急措施).

查看答案和解析>>

科目:初中数学 来源: 题型:

25、有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB=60m,水面到拱顶距离CD=18m,当洪水泛滥时,水面到拱顶距离为3.5米时需要采取紧急措施,当水面宽MN=32m时是否需要采取紧急措施?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

应用题:有一石拱桥的桥拱是圆弧形,当水面到拱顶的距离小于3.5米时,需要采取紧急措施.如图所示,正常水位下水面宽AB=60米,水面到拱顶的距离18米.
①求圆弧所在圆的半径.
②当洪水泛滥,水面宽MN=32米时,是否需要采取紧急措施?计算说明理由.

查看答案和解析>>

科目:初中数学 来源:2010-2011学年江西省赣州市寻乌中学九年级(上)第一次月考数学试卷(21-24章)(解析版) 题型:解答题

有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB=60m,水面到拱顶距离CD=18m,当洪水泛滥时,水面到拱顶距离为3.5米时需要采取紧急措施,当水面宽MN=32m时是否需要采取紧急措施?请说明理由.

查看答案和解析>>

同步练习册答案