精英家教网 > 初中数学 > 题目详情

如图,P为正方形ABCD内一点,PA=1,PB=2,PC=3,以点B为旋转中心将△ABC顺时针旋转使点A与点C重合,这时P点旋转到G点.
(1)画出旋转后的图形,此时△ABP绕点B旋转了多少度?
(2)请你猜想△PGC的形状,并说明理由.

(1)解:如图所示,此时△ABP绕点B顺时针旋转了90°;

(2)证明:由已知可得:△ABP≌△CBG,
∴BP=BG,∠ABP=∠CBG,
CG=AP=1,
又∵在正方形ABCD中,∠ABC=90°,
即∠ABP+∠PBC=90°,
∴∠CBG+∠PBC=90°,
∴∠PBG=90°,
∴在Rt△PBG中,PG2=BP2+BG2=8,
又∵GC2=12=1,PC2=32=9,
∴PC2=PG2+GC2
∴△PGC是直角三角形.
分析:(1)根据旋转中心,旋转方向,旋转后的位置,画出图形,求出旋转角度数;
(2)由旋转的性质可得可得:△ABP≌△CBG,旋转角∠PBG=90°,BP=BG=2,先求PG,在△PCG中,已知PC=3,CG=AP=1,利用勾股定理的逆定理证明△PGC是直角三角形.
点评:本题考查了旋转的性质--旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变;以及勾股定理的逆定理的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、如图,E为正方形ABCD的边AB上一点(不含A、B点),F为BC边的延长线上一点,△DAE旋转后能与△DCF重合.
(1)旋转中心是哪一点?
(2)旋转了多少度?
(3)如果连接EF,那么△DEF是怎样的三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,P为正方形ABCD的对称中心,A(0,3),B(1,0),直线OP交AB于N,DC于M,点H从原点O出发沿x轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿精英家教网OM方向以
2
个单位每秒速度运动,运动时间为t.求:
(1)C的坐标为
 

(2)当t为何值时,△ANO与△DMR相似?
(3)△HCR面积S与t的函数关系式;并求以A、B、C、R为顶点的四边形是梯形时t的值及S的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,G为正方形ABCD的对称中心,A(0,2),B(1,0),直线OG交AB于E,DC于F,点Q从A出发沿A→B→C的方向以
5
个单位每秒速度运动,同时,点P从O出发沿OF方精英家教网向以
2
个单位每秒速度运动,Q点到达终点,点P停止运动,运动时间为t.求:
(1)求G点的坐标.
(2)当t为何值时,△AEO与△DFP相似?
(3)求△QCP面积S与t的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,P为正方形ABCD的对称中心,正方形ABCD的边长为
10
,tan∠ABO=3,直线OP交AB于N,DC于M,点H从原点O出发沿x轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿OM方向以
2
个单位每秒速度运动,运动时间为t,求:
(1)直接写出A、D、P的坐标;
(2)求△HCR面积S与t的函数关系式;
(3)当t为何值时,△ANO与△DMR相似?
(4)求以A、B、C、R为顶点的四边形是梯形时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•梅州一模)如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙0与BC相切于点M,与AB、AD分别相交于点E、F.
(1)求证:CD与⊙0相切;
(2)若⊙0的半径为
2
,求正方形ABCD的边长.

查看答案和解析>>

同步练习册答案