精英家教网 > 初中数学 > 题目详情
(2012•绥化)如图,AB∥ED,∠ECF=70°,则∠BAF的度数为(  )
分析:由AB平行于ED,根据两直线平行内错角相等得到∠BAC=∠ECF,由∠ECF的度数求出∠BAC的度数,再利用邻补角定义即可求出∠BAF的度数.
解答:解:∵AB∥ED,
∴∠BAC=∠ECF,又∠ECF=70°,
∴∠BAC=70°,
则∠BAF=180°-∠BAC=180°-70°=110°.
故选B.
点评:此题考查了平行线的性质,平行线的性质为:两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补,熟练掌握平行线的性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•绥化)如图,点A、B、C、D为⊙O的四等分点,动点P从圆心O出发,沿OC-
CD
-DO的路线做匀速运动,设运动的时间为t秒,∠APB的度数为y度,则下列图象中表示y(度)与t(秒)之间函数关系最恰当的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绥化)如图,二次函数y=ax2-4x+c的图象经过坐标原点,与x轴交于点A(-4,0).
(1)求二次函数的解析式;
(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绥化)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,O、M也在格点上.
(1)画出△ABC关于直线OM对称的△A1B1C1
(2)画出△ABC绕点O按顺时针方向旋转90°后所得的△A2B2C2
(3)△A1B1C1与△A2B2C2组成的图形是轴对称图形吗?如果是轴对称图形,请画出对称轴.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绥化)如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D点坐标是(0,0),B点坐标是(3,4),矩形ABCD沿直线EF折叠,点A落在BC边上的G处,E、F分别在AD、AB上,且F点的坐标是(2,4).
(1)求G点坐标;
(2)求直线EF解析式;
(3)点N在x轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案