ÔĶÁÀí½â£º

¼ÆË㣺(£­7)£­(£­18)£«(£­5)£­6£®

½âÎö£ºÒòΪ£­7£½(£­7)£«(£­)£¬

18£½18£«£¬

£­5£½(£­7)£«(£­)£¬

£­6£½(£­5)£«(£­)£®

ԭʽ£½(£­7)£«18£«(£­5)£­6

£½[(£­7)£«(£­]£«(18£«)£«[(£­5)£«(£­)]£«[(£­6)£«(£­)]

£½[(£­7)£«18£«(£­5)£«(£­6)]£«[(£­)£«£«(£­)£«(£­)]

£½0£«(£­1)

£½£­1£®

ÉÏÃæÕâÖÖ¼ÆËã·½·¨½Ð²ðÏî·¨£¬ÇëÄã·ÂÕÕÉÏÃæµÄ·½·¨¼ÆË㣺(£­187)£­643£«(£­62)£­(£­92)£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÀí½â£º
¼ÆË㣨x+y£©£¨x-2y£©-my£¨nx-y£©£¨m¡¢n¾ùΪ³£Êý£©µÄÖµ£¬ÔÚ°Ñx¡¢yµÄÖµ´úÈë¼ÆËãʱ£¬´ÖÐĵÄСÃ÷ºÍСÁÁ¶¼°ÑyµÄÖµ¿´´íÁË£¬µ«½á¹û¶¼µÈÓÚ25£®Ï¸ÐĵÄСÃô°ÑÕýÈ·µÄx¡¢yµÄÖµ´úÈë¼ÆË㣬½á¹ûÇ¡ºÃÒ²ÊÇ25£®ÎªÁË̽¸ö¾¿¾¹£¬ËýÓÖ°ÑyµÄÖµËæ»úµØ»»³ÉÁË2006£¬Äã˵¹Ö²»¹Ö£¬½á¹û¾¹È»»¹ÊÇ25£®
£¨1£©¸ù¾ÝÒÔÉÏÇé¿ö£¬ÊÔ̽¾¿ÆäÖеİÂÃ
£¨2£©ÄãÄÜÈ·¶¨m¡¢nºÍxµÄÖµÂð£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÀí½â£º
¼ÆË㣺£¨-5
5
6
£©+£¨-9
2
3
£©+17
3
4
+£¨-3
1
2
£©
½âÎö£ºÒòΪ-5
5
6
=(-5)+(-
5
6
)
£¬-9
2
3
=(-9)+(-
2
3
)
£¬17
3
4
=17+
3
4
£¬-3
1
2
=(-3)+(-
1
2
)
£¬
ԭʽ=[£¨-5£©+£¨-
5
6
£©]+[£¨-9£©+£¨-
2
3
£©]+£¨17+
3
4
£©+[£¨-3£©+£¨-
1
2
£©]
=[£¨Ò»5£©+£¨-9£©+17+£¨Ò»3£©]+[£¨-
5
6
£©+£¨-
2
3
£©+
3
4
+£¨-
1
2
£©]
=0+£¨-1
1
4
£©
=-1
1
4

ÉÏÃæÕâÖÖ¼ÆËã·½·¨½Ð²ðÏî·¨£¬Äã¿´¶®ÁËÂð£¿
·ÂÕÕÉÏÃæµÄ·½·¨£¬ÇëÄã¼ÆË㣺£¨-200
5
6
£©+£¨-199
2
3
£©-400
3
4
+£¨-1
1
2
£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÀí½â£º
¼ÆËã(1+
1
2
+
1
3
+
1
4
)
¡Á(
1
2
+
1
3
+
1
4
+
1
5
)
-(1+
1
2
+
1
3
+
1
4
+
1
5
)
¡Á(
1
2
+
1
3
+
1
4
)
ʱ£¬Èô°Ñ(
1
2
+
1
3
+
1
4
+
1
5
)
Ó루
1
2
+
1
3
+
1
4
)
·Ö±ð¸÷¿´×ÅÒ»¸öÕûÌ壬ÔÙÀûÓ÷ÖÅäÂɽøÐÐÔËË㣬¿ÉÒÔ´ó´ó¼ò»¯ÄѶȣ®¹ý³ÌÈçÏ£º
½â£ºÉè(
1
2
+
1
3
+
1
4
)
ΪA£¬(
1
2
+
1
3
+
1
4
+
1
5
)
ΪB£¬
Ôòԭʽ=B£¨1+A£©-A£¨1+B£©=B+AB-A-AB=B-A=
1
5
£®ÇëÓÃÉÏÃæ·½·¨¼ÆË㣺
¢Ù(1+
1
2
+
1
3
+
1
4
+
1
5
+
1
6
)
(
1
2
+
1
3
+
1
4
+
1
5
+
1
6
+
1
7
)
-(1+
1
2
+
1
3
+
1
4
+
1
5
+
1
6
+
1
7
)
(
1
2
+
1
3
+
1
4
+
1
5
+
1
6
)

¢Ú(1+
1
2
+
1
3
¡­+
1
n
)
(
1
2
+
1
3
¡­+
1
n+1
)
-(1+
1
2
+
1
3
¡­+
1
n+1
)
(
1
2
+
1
3
¡­+
1
n
)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ÔĶÁÀí½â£º
¼ÆËãÊýѧ¹«Ê½¡ÁÊýѧ¹«Ê½-Êýѧ¹«Ê½¡ÁÊýѧ¹«Ê½Ê±£¬Èô°ÑÊýѧ¹«Ê½Ó루Êýѧ¹«Ê½·Ö±ð¸÷¿´×ÅÒ»¸öÕûÌ壬ÔÙÀûÓ÷ÖÅäÂɽøÐÐÔËË㣬¿ÉÒÔ´ó´ó¼ò»¯ÄѶȣ®¹ý³ÌÈçÏ£º
½â£ºÉèÊýѧ¹«Ê½ÎªA£¬Êýѧ¹«Ê½ÎªB£¬
Ôòԭʽ=B£¨1+A£©-A£¨1+B£©=B+AB-A-AB=B-A=Êýѧ¹«Ê½£®ÇëÓÃÉÏÃæ·½·¨¼ÆË㣺
¢ÙÊýѧ¹«Ê½Êýѧ¹«Ê½Êýѧ¹«Ê½Êýѧ¹«Ê½
¢ÚÊýѧ¹«Ê½Êýѧ¹«Ê½Êýѧ¹«Ê½Êýѧ¹«Ê½£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ÔĶÁÀí½â£º
¼ÆË㣨x+y£©£¨x-2y£©-my£¨nx-y£©£¨m¡¢n¾ùΪ³£Êý£©µÄÖµ£¬ÔÚ°Ñx¡¢yµÄÖµ´úÈë¼ÆËãʱ£¬´ÖÐĵÄСÃ÷ºÍСÁÁ¶¼°ÑyµÄÖµ¿´´íÁË£¬µ«½á¹û¶¼µÈÓÚ25£®Ï¸ÐĵÄСÃô°ÑÕýÈ·µÄx¡¢yµÄÖµ´úÈë¼ÆË㣬½á¹ûÇ¡ºÃÒ²ÊÇ25£®ÎªÁË̽¸ö¾¿¾¹£¬ËýÓÖ°ÑyµÄÖµËæ»úµØ»»³ÉÁË2006£¬Äã˵¹Ö²»¹Ö£¬½á¹û¾¹È»»¹ÊÇ25£®
£¨1£©¸ù¾ÝÒÔÉÏÇé¿ö£¬ÊÔ̽¾¿ÆäÖеİÂÃ
£¨2£©ÄãÄÜÈ·¶¨m¡¢nºÍxµÄÖµÂð£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸