精英家教网 > 初中数学 > 题目详情

作业宝已知在△ABC中,AB=BC=10,AC=8,AF⊥BC于点F,BE⊥AC于点E,取AB的中点D,则△DEF的周长为________.

14
分析:根据等腰三角形三线合一的性质可得BE是△ABC的中线,然后根据直角三角形斜边上的中线等于斜边的一半可得DF=AB,EF=AC,然后判断出DE是△ABC的中位线,根据三角形的中位线平行于第三边并且等于第三边的一半可得DE=BC,然后根据三角形的周长公式列式计算即可得解.
解答:∵BE⊥AC,
∴BE是△ABC的中线,
∵AF⊥BC,D是AB的中点,
∴DF=AB=×10=5,EF=AC=×8=4,
∵BE是△ABC的中线,D是AB的中点,
∴DE是△ABC的中位线,
∴DE=BC=×10=5,
∴△DEF的周长=5+4+5=14.
故答案为:14.
点评:本题直角三角形斜边上的中线等于斜边的一半的性质,三角形的中位线定理,熟记性质与定理是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知在△ABC中,AB=AC=5,BC=8,点G为重心,那么GA=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,已知在△ABC中,∠A=(2x+10)°,∠B=(3x)°,∠ACD是△ABC的一个外角,且∠ACD=(6x-10)°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在△ABC中,∠BAC=90°,AC=4,BC=4
5
,若点D、E、F分别为AB、BC、AC边的中点,点P为AB边上的一个动点(且不与点A、B重合),PQ∥AC,且交BC于点Q,以PQ为一边在点B的异侧作正方形PQMN,设正方形PQMN与矩形ADEF的公共部分的面积为S,BP的长为x,试求S与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在△ABC中,∠BAC为直角,AB=AC,D为AC上一点,CE⊥BD于E.若BD平分∠ABC.
求证:CE=
12
BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,∠B与∠C的平分线交于点P.
(1)当∠A=70°时,求∠BPC的度数;
(2)当∠A=112°时,求∠BPC的度数;
(3)当∠A=α时,求∠BPC的度数.

查看答案和解析>>

同步练习册答案