精英家教网 > 初中数学 > 题目详情

如图,已知抛物线y=ax2+bx+c与x轴分别交于点A(-1,0)、B(3,0),与y轴分别交于点C(0,-3),其顶点为D,连接BC.
(1)求抛物线的解析式;
(2)连接AC,BD,求证∠ACO=∠CBD.
(3)若点P是抛物线上的动点,点M(1,m),是否存在数m,使得以P、M、B、C为顶点的四边形是平行四边形?若存在,直接写出m的值及P点坐标;若不存在,请说明理由.

解:(1)把点A(-1,0),B(3,0),C(0,-3 )三点的坐标代入函数解析式得

解得
所以抛物线的解析式为y=x2-2x-3.

(2)在△ACO中,OA=1,OC=3,AC==
在△DBC中,∵C(0,-3),D(1,-4),B(3,0),
∴CD=,BC==3,BD=2
∴OA:CD=OC:BC=AC:BD=1:
∴△ACO∽△DBC,
∴∠ACO=∠CBD;

(3)假设存在数m,使得以P、M、B、C为顶点的四边形是平行四边形,分两种情况:
①以BC为对角线,则BC的中点为(1.5,-1.5),则点P的坐标为(2,-3);
②以BC为边,那么PM必与BC平行,则点P的坐标为(-2,5)或(4,5).
分析:(1)把点A(-1,0),B(3,0),C(0,-3 )三点的坐标代入函数解析式y=ax2+bx+c与,利用待定系数法求解;
(2)分别计算△ACO与△DBC的三边,根据三边对应成比例的两三角形相似得出△ACO∽△DBC,由相似三角形的对应角相等即可证明出∠ACO=∠CBD;
(3)分两种情况:①以BC为对角线,那么先找出BC的中点,由点M的横坐标为1求出点P的横坐标,而P在抛物线上,代入抛物线的解析式中,即可求出符合条件的P点坐标及m的值;②以BC为边,那么PM必与BC平行,根据平移的性质、平行四边形的性质即可求出P点坐标及m的值.
点评:主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点精英家教网C(0,3).
(1)求抛物线的解析式;
(2)求直线BC的函数解析式;
(3)在抛物线上,是否存在一点P,使△PAB的面积等于△ABC的面积,若存在,求出点P的坐标,若不存在,请说明理由.
(4)点Q是直线BC上的一个动点,若△QOB为等腰三角形,请写出此时点Q的坐标.(可直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)精英家教网、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)点P是抛物线对称轴上一点,若△PAB∽△OBC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c的顶点是(-1,-4),且与x轴交于A、B(1,0)两点,交y轴于点C;
(1)求此抛物线的解析式;
(2)①当x的取值范围满足条件
-2<x<0
-2<x<0
时,y<-3;
     ②若D(m,y1),E(2,y2)是抛物线上两点,且y1>y2,求实数m的取值范围;
(3)直线x=t平行于y轴,分别交线段AC于点M、交抛物线于点N,求线段MN的长度的最大值;
(4)若以抛物线上的点P为圆心作圆与x轴相切时,正好也与y轴相切,求点P的坐标.

查看答案和解析>>

同步练习册答案