精英家教网 > 初中数学 > 题目详情

(1)如图1,平行四边形ABCD中,DE⊥AC,BF⊥AC,垂足分别为E、F,求证:∠ADE=∠CBF;
(2)如图2,在梯形ABCD中,AB∥CD,AD=BC,延长AB到E,使BE=DC,连接AC、CE,求证:AC=CE;
(3)如图3,已知E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证:AE=FG.

(1)证明:在?ABCD中AD∥BC,AD=BC;
∵AD∥BC,
∴∠DAE=∠BCF;
∵DE⊥ACBF⊥AC,
∴∠AED=∠BFC=90°;
在△ADE和△BCF中
∴△ADE≌△BCF;
∴∠ADE=∠CBF;

(2)证明:连接BD;
∵在梯形ABCD中,AB∥CD,AD=BC,
∴AC=BD;
又∵DC=BE且DC∥BE,
∴四边形BECD是平行四边形;
∴BD=CE;
∴AC=CE;

(3)证明:连接EC;
∵四边形ABCD是正方形,
∴AB=BC,∠BCD=90°,
在四边形EFCG中,
∵EG⊥DC,
∴∠EGC=90°;
同理∠EFC=90°;
∴四边形EFCG为矩形;
∴EC=GF;
在△ABE和△CBE中

∴△ABE≌△CBE;
∴AE=CE=FG.
分析:(1)本题可通过证三角形ADE和CBF全等来解.根据ABCD是平行四边形可得出一组对应角相等和一组对应边相等,又有一组直角,因此可证得两三角形全等.
(2)根据等腰梯形的性质,等腰梯形的对角线相等,我们可连接BD,那么AC=BD,那么只要证BD=CE就行了,由于题中说明了DC平行且相等于BE,因此四边形DCEB是个平行四边形,因此可得出BD=CE.
(3)可通过构建全等三角形来证得,连接EC,我们不难得出四边形GEFC是矩形,由此可得出FG=EC,因此我们只要证AE=EC就可以了,那么就必须证得三角形AEB和CEB全等.根据正方形的性质我们不难得出两三角形全等的条件.(SAS)
点评:本题主要考查了等腰梯形,正方形,矩形的性质,以及全等三角形的判定,利用全等三角形来证线段相等是常用的方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

6、如图,一个平行四边形被分成面积为S1、S2、S3、S4四个小平行四边形,当CD沿AB自左向右在平行四边形内平行滑动时,S1S4与S2S3的大小关系为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,平行四边形纸片ABCD的面积为120,AD=20,AB=18.今沿两对角线将四边形ABCD剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD、CB重合)形成对称图形戊,如图2所示,则图形戊的两条对角线长度之和是
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

30、如图,在平行四边形ABCD中,O是对角线AC的中点,过O点作直线EF分别交BC、AD于E、F.
(1)求证:BE=DF;
(2)若AC,EF将平行四边形ABCD分成的四部分的面积相等,指出E点的位置,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的正弦值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如果四边形中一对顶点到另一对顶点所连对角线的距离相等,则把这对顶点叫做这个四边形的一对等高点.
例如:如图1,平行四边形ABCD中,可证点A、C到BD的距离相等,所以点A、C是平行四边形ABCD的一对等高点,同理可知点B、D也是平行四边形ABCD的一对等高点.
(1)已知平行四边形ABCD,请你在两个备用图中分别画出一个只有一对等高点的四边ABCE,其中E点分别在四边形ABCD的形内、形外(要求:画出必要的辅助线);
(2)如图2,P是四边形ABCD对角线BD上任意一点(不与B、D点重合),S1、S2、S3、S4分别表示△ABP、△CBP、△ADP、△CDP的面积.若四边形ABCD只有一对等高点A、C,S1、S2、S3、S4四者之间的等量关系如何?

查看答案和解析>>

同步练习册答案