精英家教网 > 初中数学 > 题目详情

如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,ΔPEF、ΔPDC、ΔPAB的面积分别为S、S1、S2..若S=2,则S1+S2= .

 

 

8.

【解析】

试题分析:过P作PQ平行于DC,由DC与AB平行,得到PQ平行于AB,可得出四边形PQCD与ABQP都为平行四边形,进而确定出△PDC与△PCQ面积相等,△PQB与△ABP面积相等,再由EF为△BPC的中位线,利用中位线定理得到EF为BC的一半,且EF平行于BC,得出△PEF与△PBC相似,相似比为1:2,面积之比为1:4,求出△PBC的面积,而△PBC面积=△CPQ面积+△PBQ面积,即为△PDC面积+△PAB面积,即为平行四边形面积的一半,即可求出所求的面积.

试题解析:过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,

∴四边形PQCD与四边形APQB都为平行四边形,

∴△PDC≌△CQP,△ABP≌△QPB,

∴S△PDC=S△CQP,S△ABP=S△QPB,

∵EF为△PCB的中位线,

∴EF∥BC,EF=BC,

∴△PEF∽△PBC,且相似比为1:2,

∴S△PEF:S△PBC=1:4,S△PEF=2,

∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=S1+S2=8.

考点:1.平行四边形的性质;2.相似三角形的判定与性质.

 

练习册系列答案
相关习题

科目:初中数学 来源:2014-2015学年江苏省扬州市邗江区八年级上学期期中测试数学试卷(解析版) 题型:选择题

下列说法中,正确的是( )

A.两个全等三角形一定关于某直线对称

B.等边三角形的高、中线、角平分线都是它的对称轴

C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧

D.关于某直线对称的两个图形是全等形

 

查看答案和解析>>

科目:初中数学 来源:2014-2015学年江苏省宝应县九年级上学期期中考试数学试卷(解析版) 题型:填空题

若圆锥的轴截面是一个边长为2的等边三角形,则这个圆锥的侧面积是 .

 

查看答案和解析>>

科目:初中数学 来源:2014-2015学年江苏省宜兴市九年级上学期期中考试数学试卷(解析版) 题型:解答题

如图,在菱形ABCD中,AC、BD交于点O,AC=12cm,BD=16cm。动点P在线段AB上,由B向A运动,速度为1cm/s,动点Q在线段OD上,由D向O运动,速度为1cm/s。过点Q作直线EF┴BD交AD于E,交CD于F,连接PF,设运动时间为t(0<t<8)。问

(1)何时四边形APFD为平行四边形?求出相应t的值;

(2)设四边形APFE面积为ycm2,求y与t的函数关系式;.

(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出相应t的值,并求出,P、E两点间的距离,若不存在,说明理由。

 

查看答案和解析>>

科目:初中数学 来源:2014-2015学年江苏省宜兴市九年级上学期期中考试数学试卷(解析版) 题型:解答题

已知四边形ABCD顶点都在4×4的正方形网格格点上,如图所示,

(1)请画出四边形ABCD的外接圆,并标明圆心M的位置;

(2)这个圆中弦BC所对的圆周角的度数是 。

 

查看答案和解析>>

科目:初中数学 来源:2014-2015学年江苏省宜兴市九年级上学期期中考试数学试卷(解析版) 题型:填空题

若关于x的方程x2-5x+k=0的一个根是0,则另一个根是 .

 

查看答案和解析>>

科目:初中数学 来源:2014-2015学年江苏省宜兴市九年级上学期期中考试数学试卷(解析版) 题型:选择题

如图,菱形ABCD中,点M,N在AC上,ME⊥AD, NF⊥AB.若NF = NM = 2,ME = 3,则AN 为( )

A.3 B.4 C.5 D.6

 

查看答案和解析>>

科目:初中数学 来源:2014-2015学年江苏省七年级上学期期中考试数学试卷(解析版) 题型:填空题

单项式-()2a2b3c 的系数是

 

查看答案和解析>>

科目:初中数学 来源:2014-2015学年江苏省启东市八年级上学期期中考试数学试卷(解析版) 题型:解答题

如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.

(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;

(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;

(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.

 

查看答案和解析>>

同步练习册答案