【题目】如图,在平面直角坐标系中,直线经过第一、二、三象限,与轴交于点,点在这条直线上,连接,已知的面积等于1.
(1)求的值;
(2)如果反比例函数y=(k是常量,k≠0)的图象经过点A,求这个反比例函数的解析式。
【答案】(1)1
(2)
【解析】
(1) 由A的横坐标为2得到AC=2,对于直线解析式,令y=0求出x的值,表示出OB的长,三角形AOB面积以OB为底,AC为高表示出,根据已知三角形的面积求出OB的长,确定出B坐标,代入一次函数解析式中即可求出b的值;
(2)将A坐标代入一次函数求出t的值,确定出A坐标,将A坐标代入反比例解析式中求出k的值,即可确定出反比例解析式.
(1)解:∵直线经过第一、二、三象限,与轴交于点,
∴
∵的面积等于1,点
∴
∴
(2)由b=1,得到直线解析式为y=x+1,
将A(2,t)代入直线解析式得:t=1+1=2,即A(2,2),
把A(2,2)代入反比例解析式得:k=4,
则反比例解析式为y=
即点在直线上.
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,,点是边上的中点,点是边上的动点.将沿AE折叠,点落在点处;将沿折叠,点落在点处.当的长度为__________时,点与点能重合.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,AQ、BN、CN、DQ分別是∠DAB、∠ABC、∠BCD、∠CDA的平分线,AQ与BN相交于点P,CN与DQ相交于点M,判断四边形MNPQ的形状,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“读书破万卷,下笔如有神”,这是古人关于读书的成功经验.开展课外阅读可以引起学生浓厚的学习兴趣和探求知识的强烈欲望,丰富知识,开阔视野,也有利于学习和巩固老师在课堂上所教的基础知识,使学生学得有趣,学得扎实,学得活泼,是启发智慧和锻炼才能的一条重要途径.为了创设全新的校园文化氛围,进一步组织学生开展课外阅读,让学生在丰富多彩的书海中,扩大知识源,亲近母语,提高文学素养.某校准备开展“与经典为友、与名著为伴”的阅读活动,活动前对本校学生进行了“你最喜欢的图书类型(只写一项)”的随机抽样调查,相关数据统计如下:
请根据以上信息解答下列问题:
(1)该校对多少名学生进行了抽样调查?
(2)请将图1和图2补充完整,并求出扇形统计图中小说所对应的圆心角度数.
(3)已知该校共有学生800人,利用样本数据估计全校学生中最喜欢小说人数约为多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知,,,,且以为顶点的四边形为菱形.
(1)直接写出点的坐标;
(2)请用无刻度直尺作直线,使直线经过点且平分菱形的面积,保留作图痕迹(若无法打印答题卡,不便于规范作图,请用几何语言直接描述具体的作图过程代替作图);
(3)已知点是边上一点,若线段将菱形的面积分为两部分,直接写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明租用共享单车从家出发,匀速骑行到相距2400米的邮局办事.小明出发的同时,他的爸爸以每分钟100米的速度从邮局沿同一条道路步行回家,小明在邮局停留了2分钟后沿原路按原速返回.设他们出发后经过t(分)时,小明与家之间的距离为s1(米),小明爸爸与家之间的距离为s2(米),图中折线OABD,线段EF分别表示s1,s2与t之间的函数关系的图象.
(1)求s1与t之间的函数表达式;
(2)小明从家出发,经过_______分在返回途中追上爸爸.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)请在横线上填写合适的内容,完成下面的证明:
如图①如果AB∥CD,求证:∠APC=∠A+∠C.
证明:过P作PM∥AB.
所以∠A=∠APM,( )
因为PM∥AB,AB∥CD(已知)
所以∠C= ( )
因为∠APC=∠APM+∠CPM
所以∠APC=∠A+∠C(等量代换)
(2)如图②,AB∥CD,根据上面的推理方法,直接写出∠A+∠P+∠Q+∠C= .
(3)如图③,AB∥CD,若∠ABP=x,∠BPQ=y,∠PQC=z,∠QCD=m,则m= (用x、y、z表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知一次函数(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.
(1)求点A、B、D的坐标;
(2)求一次函数和反比例函数的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com