精英家教网 > 初中数学 > 题目详情

如图,在?ABCD中,AB=3,AC=4,BC=5,各边中点分别为E、F、G、H,则四边形EFGH的周长为________.

4+2
分析:首先连接BD,由在?ABCD中,AB=3,AC=4,BC=5,利用勾股定理的逆定理,即可证得∠BAC=90°,则可求得OB的长,继而求得BD的长,然后利用三角形中位线的性质即可求得答案.
解答:解:连接BD,
∵在?ABCD中,AB=3,AC=4,BC=5,
∴BC2=AB2+AC2,AD=BC=5,CD=AB=3,
∴∠BAC=90°,
∵OA=AC=2,
在Rt△ABO中,OB==
∴BD=2OB=2
∵?ABCD各边中点分别是E、F、G、H,
∴EF=GH=AC=2,EH=FC=BD=
∴四边形EFGH的周长为:EH+EF+FC+GH=4+2
故答案为:4+2
点评:此题考查了平行四边形的性质、勾股定理、勾股定理的逆定理以及三角形中位线的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在?ABCD中,对角线AC、BD相交于点O,AB=
29
,AC=4,BD=10.
问:(1)AC与BD有什么位置关系?说明理由.
(2)四边形ABCD是菱形吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,在?ABCD中,∠A的平分线交BC于点E,若AB=10cm,AD=14cm,则EC=
4
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•长春一模)感知:如图①,在菱形ABCD中,AB=BD,点E、F分别在边AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如图②,在菱形ABCD中,AB=BD,点E、F分别在BA、AD的延长线上.若AE=DF,△ADE与△DBF是否全等?如果全等,请证明;如果不全等,请说明理由.
拓展:如图③,在?ABCD中,AD=BD,点O是AD边的垂直平分线与BD的交点,点E、F分别在OA、AD的延长线上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•犍为县模拟)甲题:已知关于x的一元二次方程x2=2(1-m)x-m2的两实数根为x1,x2
(1)求m的取值范围;
(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.
乙题:如图,在?ABCD中,BE⊥AD于点E,BF⊥CD于点F,AC与BE、BF分别交于点G,H.
(1)求证:△BAE∽△BCF.
(2)若BG=BH,求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于点O,连接CE,则△CBE的周长是
2
13
+4
2
13
+4

查看答案和解析>>

同步练习册答案