精英家教网 > 初中数学 > 题目详情
已知:如图,在Rt△ABC中,∠A=90°,∠B=30°,CD平分∠C,交边AB于点D,E是边BC的中点.
求证:DE⊥BC.
分析:由三角形内角和定理求得∠ACB=60°.然后根据角平分线的定义、等量代换推知∠BCD=∠B.易证△BDC是等腰三角形,然后由等腰三角形“三合一”的性质证得结论.
解答:证明:在Rt△ABC中,
∵∠A=90°,∠B=30°,∴∠ACB=60°.
∵CD平分∠C,∴∠BCD=
1
2
∠ACB=30°.
∴∠BCD=∠B.
∴BD=CD.
∵BE=CE,∴DE⊥BC.
点评:本题考查了直角三角形的性质和等腰三角形的判定与性质.此题也可以通过△BDE≌△CDE来证明DE⊥BC.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,过点B作BD∥AC,且BD=2AC,连接AD.试判断△ABD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•陕西)已知,如图,在Rt△ABC中,∠C=90°,以AC为直径的⊙O交斜边AB于E,OD∥AB.求证:①ED是⊙O的切线;②2DE2=BE•OD.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•丰台区一模)已知:如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连结DE.
(1)求证:DE与⊙O相切;
(2)连结OE,若cos∠BAD=
3
5
,BE=
14
3
,求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y.
(1)求出cosB的值;
(2)用含y的代数式表示AE;
(3)求y与x之间的函数关系式,并求出x的取值范围;
(4)设四边形DECF的面积为S,求出S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,在Rt△ABC中,∠C=90°,AC=15,BC=20,求斜边AB上的高CD.

查看答案和解析>>

同步练习册答案