3£®ÔĶÁÏÂÁвÄÁÏ£¬²¢½â¾öÏà¹ØµÄÎÊÌ⣮
°´ÕÕÒ»¶¨Ë³ÐòÅÅÁÐ×ŵÄÒ»ÁÐÊý³ÆÎªÊýÁУ¬ÅÅÔÚµÚһλµÄÊý³ÆÎªµÚ1Ï¼ÇΪa1£¬ÒÀ´ËÀàÍÆ£¬ÅÅÔÚµÚnλµÄÊý³ÆÎªµÚnÏ¼ÇΪan£®
Ò»°ãµØ£¬Èç¹ûÒ»¸öÊýÁдӵڶþÏîÆð£¬Ã¿Ò»ÏîÓëËüǰһÏîµÄ±ÈµÈÓÚͬһ¸ö³£Êý£¬ÄÇôÕâ¸öÊýÁнÐ×öµÈ±ÈÊýÁУ¬Õâ¸ö³£Êý½Ð×öµÈ±ÈÊýÁеĹ«±È£¬¹«±Èͨ³£ÓÃ×Öĸq±íʾ£¨q¡Ù0£©£®È磺ÊýÁÐ1£¬3£¬9£¬27£¬¡­ÎªµÈ±ÈÊýÁУ¬ÆäÖÐa1=1£¬¹«±ÈΪq=3£®
Ôò£º£¨1£©µÈ±ÈÊýÁÐ3£¬6£¬12£¬¡­µÄ¹«±ÈqΪ2£¬µÚ4ÏîÊÇ24£®
£¨2£©Èç¹ûÒ»¸öÊýÁÐa1£¬a2£¬a3£¬a4£¬¡­ÊǵȱÈÊýÁУ¬ÇÒ¹«±ÈΪq£¬ÄÇô¸ù¾Ý¶¨Òå¿ÉµÃµ½£º$\frac{a_2}{a_1}$=q£¬$\frac{a_3}{a_2}$=q£¬$\frac{a_4}{a_3}$=q£¬¡­$\frac{a_n}{{{a_{n-1}}}}$=q£®
ËùÒÔ£ºa2=a1•q£¬a3=a2•q=£¨a1•q£©•q=a1•q2£¬a4=a3•q=£¨a1•q2£©•q=a1•q3£¬¡­
Óɴ˿ɵãºan=a1•qn-1£¨ÓÃa1ºÍqµÄ´úÊýʽ±íʾ£©£®
£¨3£©ÈôÒ»µÈ±ÈÊýÁеĹ«±Èq=2£¬µÚ2ÏîÊÇ10£¬ÇëÇóËüµÄµÚ1ÏîÓëµÚ4Ï

·ÖÎö £¨1£©ÓɵڶþÏî³ýÒÔµÚÒ»ÏîÇó³ö¹«±ÈqµÄÖµ£¬È·¶¨³öµÚ4Ïî¼´¿É£»
£¨2£©¸ù¾ÝÌâÖе͍Òå¹éÄÉ×ܽáµÃµ½Í¨Ïʽ¼´¿É£»
£¨3£©Óɹ«±ÈqÓëµÚ¶þÏîµÄÖµÇó³öµÚÒ»ÏîµÄÖµ£¬½ø¶øÈ·¶¨³öµÚ4ÏîµÄÖµ£®

½â´ð ½â£º£¨1£©q=$\frac{6}{3}$=2£¬µÚ4ÏîÊÇ24£»
£¨2£©¹éÄÉ×ܽáµÃ£ºan=a1•qn-1£»
£¨3£©¡ßµÈ±ÈÊýÁеĹ«±Èq=2£¬µÚ¶þÏîΪ10£¬
¡àa1=$\frac{{a}_{2}}{q}$=5£¬a4=a1•q3=5¡Á23=40£®
¹Ê´ð°¸Îª£º£¨1£©2£»24£»£¨2£©a1•qn-1

µãÆÀ ´ËÌ⿼²éÁ˹æÂÉÐÍ£ºÊý×ֵı仯À࣬ŪÇåÌâÖеĹæÂÉÊǽⱾÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÏÂÁз½³ÌÖУº¢Ùx+y=x2£»¢Ú$\frac{{x}^{3}}{x}$-x=0£»¢Û£¨x2-1£©£¨x+1£©=x£¨5+x£©£»¢Ü$\sqrt{5}$t2-6t=0£»¢Ýy2=6£»¢Þ$\frac{x}{3}$-1=$\frac{{x}^{2}}{4}$£¬ÊôÓÚÒ»Ôª¶þ´Î·½³ÌµÄÊÇ£¨¡¡¡¡£©
A£®¢Ù¢Ü¢ÝB£®¢Û¢Ü¢ÝC£®¢Ü¢Ý¢ÞD£®¢Ú¢Ý¢Þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÏÂÁжàÏîʽÏà³Ë£¬²»ÄÜÓÃÆ½·½²î¹«Ê½µÄÊÇ£¨¡¡¡¡£©
A£®£¨-2y-x£©£¨x+2y£©B£®£¨x-2y£©£¨-x-2y£©C£®£¨x-2y£©£¨2y+x£©D£®£¨2y-x£©£¨-x-2y£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÏÂÁÐ˵·¨´íÎóµÄÊÇ£¨¡¡¡¡£©
A£®42µÄËãÊõƽ·½¸ùΪ4B£®$\sqrt{4}$µÄËãÊõƽ·½¸ùΪ$\sqrt{2}$
C£®$\sqrt{{3}^{2}}$µÄËãÊõƽ·½¸ùÊÇ$\sqrt{3}$D£®$\sqrt{81}$µÄËãÊõƽ·½¸ùÊÇ9

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®£¨1£©¼ÆË㣺2$\sqrt{3}$-$\sqrt{8}$+$\frac{1}{2}$$\sqrt{12}$+$\frac{1}{5}$$\sqrt{50}$
£¨2£©ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º£¨a-$\sqrt{3}$£©£¨a+$\sqrt{3}$£©-a£¨a-6£©£¬ÆäÖÐa=$\sqrt{5}$+$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÔÚ20kmÔ½Ò°ÈüÖУ¬¼×ÒÒÁ½Ñ¡ÊÖµÄÐгÌy£¨µ¥Î»£ºkm£©ËæÊ±¼äx£¨µ¥Î»£ºh£©±ä»¯µÄͼÏóÈçͼËùʾ£¬¸ù¾ÝͼÖÐÌṩµÄÐÅÏ¢£¬ÓÐÏÂÁÐ˵·¨£º¢ÙÁ½ÈËÏàÓöǰ£¬¼×µÄËÙ¶ÈСÓÚÒÒµÄËÙ¶È£»¢Ú³ö·¢ºó1Сʱ£¬Á½ÈËÐг̾ùΪ10km£»¢Û³ö·¢ºó1.5Сʱ£¬¼×µÄÐг̱ÈÒÒ¶à3km£»¢Ü¼×±ÈÒÒÏȵ½´ïÖյ㣮ÆäÖÐÕýÈ·µÄÓУ¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬ÔÚ?ABCDÖУ¬µãE£¬F·Ö±ðÔÚAB£¬DCÉÏ£¬ÇÒED¡ÍDB£¬FB¡ÍBD£®
£¨1£©ÇóÖ¤£º¡÷AED¡Õ¡÷CFB£»
£¨2£©Èô¡ÏA=30¡ã£¬¡ÏDEB=45¡ã£¬ÇóÖ¤£ºDA=DF£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Æ½ÒƱ任²»½öÓ뼸ºÎͼÐÎÓÐ×ÅÃÜÇеÄÁªÏµ£¬¶øÇÒÔÚÒ»Ð©ÌØÊâ½á¹¹µÄºº×ÖÖУ¬Ò²ÓÐÆ½ÒƱ任µÄÏÖÏó£¬È磺¡°ÈÕ¡±£¬¡°Åó¡±£¬¡°É­¡±µÈ£¬ÇëÄ㿪¶¯ÄԽÔÙд³öÁ½¸ö¾ßÓÐÆ½ÒƱ任ÏÖÏóµÄºº×ÖÓ𣬹磬Ʒ£¬¾§µÈ£¬´ð°¸²»Î¨Ò»£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®¼ÆËã$£¨\sqrt{12}-\sqrt{27}£©¡Â\sqrt{3}$µÈÓÚ-1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸