精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD是正方形,点G是BC上的任意一点,DE⊥AG于点E,BF∥DE,且交AG于点F,则下列结论不正确的是(  )
分析:根据正方形的性质可得AB=AD,∠BAD=90°,根据同角的余角相等求出∠BAF=∠ADE,再根据两直线平行,内错角相等求出∠AED=∠BFA=90°,然后利用“角角边”证明△ABF和△DAE全等,根据全等三角形对应边相等可得BF=AE,AF=DE,再结合图形表示出EF即可得解.
解答:解:∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∵DE⊥AG,
∴∠AED=90°,
∴∠ADE+∠DAE=90°,
又∵∠BAF+∠DAE=∠BAD=90°,
∴∠BAF=∠ADE,
∵BF∥DE,
∴∠AED=∠BFA=90°,
在△ABF和△DAE中,
∠BAF=∠ADE
∠AED=∠BFA=90°
AB=AD

∴△ABF≌△DAE(AAS),
∴BF=AE,AF=DE,
∴EF=AF-AE=AF-BF,
而EF与CG的关系无法确定.
所以,结论不成立的只有A.
故选A.
点评:本题考查了正方形的性质,全等三角形的判定与性质,熟记性质并确定出△ABF和△DAE全等是解题的关键,也是本题的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案