精英家教网 > 初中数学 > 题目详情

已知y+3与x+2成正比例,且当x=3时,y=7.
(1)写出y与x之间的函数关系式;
(2)当x=-1时,求y的值;
(3)当y=0时,求x的值.

(1)y=2x+1;(2)-1;(3).

解析试题分析:(1)已知y+3与x+2成正比例,所以,设y+3="k(" x+2),把x=3,y=7代入求出k的值,即可写出y与x之间的函数关系式,
(2)把x=-1代入y与x之间的函数关系式,求出y的值.
(3)把y=0代入y与x之间的函数关系式,求出x的值.
试题解析:(1)y=2x+1
(2)x=-1时y= -1
(3)y=0时x=
考点:1.正比例函数关系式.2.函数值和自变量值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图:一次函数的图象与反比例函数的图象交于A(-2,6)和点B(4,n)

(1)求反比例函数的解析式和B点坐标
(2)根据图象回答,在什么范围时,一次函数的值大于反比例函数的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,一次函数与反比例函数的图象交于A(2,1),B(-1,)两点.

(1)求m、k、b的值;
(2)连接OA、OB,计算三角形OAB的面积;
(3)结合图象直接写出不等式的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线y=kx-2与x轴、y轴分别交于B、C两点,OB:OC=
 
(1)求B点的坐标和k的值.
(2)若点A(x,y)是第一象限内的直线y=kx-2上的一个动点,当点A运动过程中,①试写出△AOB的面积S与x的函数关系式;②探索:当点A运动到什么位置时,△AOB的面积是1.③在②成立的情况下,x轴上是否存在一点P,使△POA是等腰三角形.若存在,请写出满足条件的所有P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知直线与x轴、y轴分别交于点A、B,线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°.

(1)求△AOB的面积;
(2)求点C坐标;
(3)点P是x轴上的一个动点,设P(x,0)
①请用x的代数式表示PB2、PC2
②是否存在这样的点P,使得|PC-PB|的值最大?如果不存在,请说明理由;
如果存在,请求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:

(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;
(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

国家推行“节能减排,低碳经济”的政策后,某企业推出一种叫“CNG”的改烧汽油为天然气的装置,每辆车改装费为b元.据市场调查知:每辆车改装前、后的燃料费(含改装费)(单位:元)与正常运营时间(单位:天)之间分别满足关系式:,如图所示.

试根据图像解决下列问题:
(1)每辆车改装前每天的燃料费=     元,每辆车的改装费b=    元.正常运营    天后,就可以从节省燃料费中收回改装成本.
(2)某出租汽车公司一次性改装了100辆车,因而,正常运营多少天后共节省燃料费40万元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,一次函数y=kx+1(k≠0)与反比例函数(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.

(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.

(1)求C点坐标;
(2)求直线MN的解析式;
(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.

查看答案和解析>>

同步练习册答案