精英家教网 > 初中数学 > 题目详情

如图,梯形ABCD中,AD∥BC,EF是中位线,M是AD上一点,若S△MEF=4,则梯形ABCD的面积为________.

16
分析:设梯形的高为h,根据已知△DEF的高为梯形高的一半,从而根据三角形的面积可求得中位线与高的乘积,即求得了梯形的面积.
解答:设梯形的高为h,
∵EF是梯形ABCD的中位线,
∴△DEF的高为
∵△DEF的面积为 12×EF×=h•EF=4,
∴h•EF=16,
∴梯形ABCD的面积为EF•h=16.
故答案为16.
点评:此题主要考查梯形中位线定理的运用.解题的关键是利用梯形的性质得到梯形的高和三角形的高之间的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图,梯形ABCD中,AD∥BC,∠B=45°,∠C=120°,AB=8,则CD的长为(  )
A、
8
6
3
B、4
6
C、
8
2
3
D、4
2

查看答案和解析>>

科目:初中数学 来源: 题型:

5、已知:如图,梯形ABCD中,AD∥BC,AB=DC,AC、BD相交于点O,那么,图中全等三角形共有
3
对.

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,梯形ABCD中,AD∥BC,BD为对角线,中位线EF交BD于O点,若FO-EO=3,则BC-AD等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,梯形ABCD中,已知AD∥BC,∠A=90°,AB=7,AD=2,cosC=
2
10

(1)求BC的长;
(2)试在边AB上确定点P的位置,使△PAD∽△PBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,梯形ABCD中,AD∥BC,BC=5,AD=3,对角线AC⊥BD,且∠DBC=30°,求梯形ABCD的高.

查看答案和解析>>

同步练习册答案