精英家教网 > 初中数学 > 题目详情
(2003•黄石)2003年在法国举行的第47届世界乒乓球单项锦标赛中,我国运动员顽强拼搏取得了4金4银的好成绩.在比赛中我国一年青运动员在先输三局的情况下,连扳4局,反败为胜,终以4:3淘汰一外国名将,这四局球的比分依次是:6:11、10:12、7:11、11:8、13:11、12:10、11:6.我国这位运动员七局得分这组数据为:(6、10、7、11、13、12、11)的众数、中位数、平均数分别是( )
A.6、11、11
B.11、12、10
C.11、11、9
D.11、11、10
【答案】分析:分别利用众数、中位数、平均数的定义求出相应数据即可.
解答:解:因为11出现了2次,其它数字都只出现一次,所以众数是11;
把数据按从小到大的顺序排列得到6、7、10、11、11、12、13,最中间的一个数是11,所以中位数是11;
要求平均数只要求出数据之和再除以总个数即可,平均数为(6+10+7+11+13+12+11)=10.
故选D.
点评:本题考查的是平均数、众数和中位数的求法,比较简单.
平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.
练习册系列答案
相关习题

科目:初中数学 来源:2003年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:解答题

(2003•黄石)先阅读下面一段材料,再完成后面的问题:
材料:过抛物线y=ax2(a>0)的对称轴上一点(0,-)作对称轴的垂线l,则抛物线上任意一点P到点F(0,)的距离与P到l的距离一定相等,我们将点F与直线l分别称作这抛物线的焦点和准线,如y=x2的焦点为(0,).
问题:若直线y=kx+b交抛物线y=x2于A、B、AC、BD垂直于抛物线的准线l,垂直足分别为C、D(如图).
①求抛物线y=x2的焦点F的坐标;
②求证:直线AB过焦点时,CF⊥DF;
③当直线AB过点(-1,0),且以线段AB为直径的圆与准线l相切时,求这条直线对应的函数解析式.

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《二次函数》(02)(解析版) 题型:解答题

(2003•黄石)二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于C(0,3),若△ABC的面积为9,求此二次函数的最小值.

查看答案和解析>>

科目:初中数学 来源:2003年湖北省黄石市中考数学试卷(解析版) 题型:解答题

(2003•黄石)先阅读下面一段材料,再完成后面的问题:
材料:过抛物线y=ax2(a>0)的对称轴上一点(0,-)作对称轴的垂线l,则抛物线上任意一点P到点F(0,)的距离与P到l的距离一定相等,我们将点F与直线l分别称作这抛物线的焦点和准线,如y=x2的焦点为(0,).
问题:若直线y=kx+b交抛物线y=x2于A、B、AC、BD垂直于抛物线的准线l,垂直足分别为C、D(如图).
①求抛物线y=x2的焦点F的坐标;
②求证:直线AB过焦点时,CF⊥DF;
③当直线AB过点(-1,0),且以线段AB为直径的圆与准线l相切时,求这条直线对应的函数解析式.

查看答案和解析>>

科目:初中数学 来源:2003年湖北省黄石市中考数学试卷(解析版) 题型:解答题

(2003•黄石)二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于C(0,3),若△ABC的面积为9,求此二次函数的最小值.

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《锐角三角函数》(04)(解析版) 题型:解答题

(2003•黄石)如图,过Rt△ABC的直角顶点C作圆O,圆O与△ABC的两边AB、BC分别相切于D、C,并交AC边于E.在优弧DE上任取一点F,连接FE、FD,若BC=a,cos∠EFD=
①求证:AD=BD;
②试求∠EDA的大小;
③计算圆O的面积.

查看答案和解析>>

同步练习册答案