精英家教网 > 初中数学 > 题目详情

已知:如图,AB是⊙O的直径,AB=10,DC切⊙O于点C,AD⊥DC,垂足为D,AD交⊙O于点E.
(1)求证:BC=EC;(2)若数学公式,求DC的长.

(1)证明:连接OC.
由DC是切线,得OC⊥DC,
又AD⊥DC,
∴AD∥OC,
∴∠DAC=∠ACO.
又由OA=OC,
得∠BAC=∠ACO,
∴∠DAC=∠BAC,

∴BC=EC.

(2)解:∵AB为直径,
∴∠ACB=90°,
又∵∠BAC=∠BEC,
∴AC=AB•cos∠BAC=AB•cos∠BEC=8,


又∵∠DAC=∠BAC=∠BEC,且AD⊥DC,

分析:(1)连接OC.根据切线的性质,得OC⊥DC,结合已知条件,得AD∥OC,根据两条直线平行,内错角相等,得∠DAC=∠ACO,再根据同圆的半径相等,得∠BAC=∠ACO,从而得到∠DAC=∠BAC,再根据圆周角定理得到它们所对的弧相等,进一步得到弧所对的弦相等;
(2)根据直径所对的圆周角是直角,得到直角三角形ABC.根据圆周角定理,得∠BAC=∠BEC,从而利用解直角三角形的知识求得BC的长,再利用CD=AC•sin∠DAC求解.
点评:此题综合运用了切线的性质、圆周角定理和解直角三角形的知识等.连接过切点的半径是圆中常见的辅助线.在圆中,要证明两条弦相等,可以证明它们所对的圆周角相等或圆心角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知:如图,AB是⊙O的直径,BC是和⊙O相切于点B的切线,⊙O的弦AD平行于OC.
求证:DC是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•门头沟区一模)已知:如图,AB是⊙O的直径,AC是⊙O的弦,M为AB上一点,过点M作DM⊥AB,交弦AC于点E,交⊙O于点F,且DC=DE.
(1)求证:DC是⊙O的切线;
(2)如果DM=15,CE=10,cos∠AEM=
513
,求⊙O半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•昆明)已知:如图,AB是⊙O的直径,直线MN切⊙O于点C,AD⊥MN于D,AD交⊙O于E,AB的延长线交MN于点P.求证:AC2=AE•AP.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•平谷区二模)已知,如图,AB是⊙O的直径,点E是
AD
的中点,连接BE交AC于点G,BG的垂直平分线CF交BG于H交AB于F点.
(1)求证:BC是⊙O的切线;
(2)若AB=8,BC=6,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB是⊙O的直径,BC为⊙O的切线,过点B的弦BD⊥OC交⊙O于点D,垂足为E.
(1)求证:CD是⊙O的切线;
(2)当BC=BD,且BD=12cm时,求图中阴影部分的面积(结果不取近似值).

查看答案和解析>>

同步练习册答案