精英家教网 > 初中数学 > 题目详情
如图,已知在△ABC中,∠A=90°,,经过这个三角形重心的直线DE∥BC,分别交边AB、AC于点D和点E,P是线段DE上的一个动点,过点P分别做PM⊥BC,PF⊥AB,PG⊥AC,垂足分别为点M、F、G.设BM=x,四边形AFPG的面积为y.
(1)求PM的长;
(2)求y关于x的函数解析式,并写出它的定义域;
(3)连接MF、MG,当△PMF与△PMG相似时,求BM的长.

【答案】分析:(1)过点A作AN⊥BC于点N,交DE于点H,则点H为△ABC的重心,由重心的性质即可求出HE的长度,也即得出PM的长度;
(2)过点D作DI⊥BC于I,表示出DP、PE,继而表示出FP、PG,从而得出y关于x的函数解析式,也可得出x的取值范围;
(3)因为两三角形有公共边,分两种情况讨论,①△PMF≌△PMG,②△PMF∽△PGM,分别求出x的值即可.
解答:解:(1)过点A作AN⊥BC于点N,交DE于点H,则点H为△ABC的重心,

由题意得△ABC是等腰直角三角形,
故AN=BC=3,
由重心的性质可得:=2,
==
故HN=AN=1,DE=4,
即可得PM的长为1.

(2)过点D作DI⊥BC于I,过点E作EK⊥BC于点K,

则BI=DI=PM=1,
设BM=x,则IM=DP=x-1,PE=4-DP=5-x,
易得△FDP、△GPE均为等腰直角三角形,
∴PF=,PG=
则y=PF×PG=×=(x-1)(5-x)=
由图形可得点M处于I-K之间,故可得:1<x<5.
综上可得y=,(1<x<5).

(3)①当△PMF≌△PMG时,此时点P与点H重合,BM=BN=3;
②当△PMF∽△PGM时,=,即=
整理得:=
解得x=3±
综上可得当△PMF与△PMG相似时,求BM的长为3,3±
点评:本题考查了相似形综合题,涉及了等腰直角三角形的性质、矩形的面积及三角形重心的性质,注意结合图形进行解答,观察图形得出点M运动的范围,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,已知在△ABC中,AD、AE分别是BC边上的高和中线,AB=9cm,AC=7cm,BC=8m,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,求证:PM=PN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,AB=AC,∠A=100°,CD是∠ACB的平分线.
(1)∠ADC=
60°
60°

(2)求证:BC=CD+AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为
125°
125°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,CD=CE,∠A=∠ECB,试说明CD2=AD•BE.

查看答案和解析>>

同步练习册答案