精英家教网 > 初中数学 > 题目详情
18.已知,∠EPF的角平分线上有一点O,以点0为圆心的圆与角的两边分别交于A,B和C,D.易证:AB=CD.
当点P在⊙O外(如图二),点P在⊙O内,(如图三)的位置时,请你猜想并写出AB与CD的数量关系?并选择其中一种情况加以证明.

分析 对于图②:作OG⊥AB于G,OH⊥CD于H,连结OB、OD,根据垂径定理得到AG=BG,CH=DH,再根据角平分线的性质得OG=OH,然后证明Rt△OBG≌Rt△ODH得到BG=DH,则AB=CD;
对于图③:作OG⊥AB于G,OH⊥CD于H,则AG=GB,CH=HD,证明的方法与图②一样.

解答 解:AB=CD.理由如下:
对于图②:作OG⊥AB于G,OH⊥CD于H,连结OB、OD,则AG=BG,CH=DH,
∵PO平分∠EPF,
∴OG=OH,
在Rt△OBG和△ODH中,
$\left\{\begin{array}{l}{OB=OC}\\{OG=OH}\end{array}\right.$,
∴Rt△OBG≌Rt△ODH(HL),
∴BG=DH,
∴AB=CD;
对于图③:作OG⊥AB于G,OH⊥CD于H,则AG=GB,CH=HD,证明的方法与图②一样.

点评 本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了角平分线的性质和全等三角形的判定.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

8.请写出命题:“平行四边形的对角线互相平分”的逆命题:对角线互相平分的四边形为平行四边形,它是真命题(填“真”或“假”)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O半径为10.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.当x=-$\frac{2}{3}$时,二次根式$\sqrt{25-(2+3x)^{2}}$有最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.(1)实数a、b在数轴上的位置如图所示,请化简:|a|-$\sqrt{a^2}-\sqrt{b^2}$;
(2)利用不等式性质将6x+5<4x-3化为x>a或或x<a的形式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.已知a1=$\frac{1}{4}(1-\frac{1}{3})$,a2=$\frac{1}{4}(\frac{1}{3}-\frac{1}{5})$,a3=$\frac{1}{4}(\frac{1}{5}-\frac{1}{7})$,a4=$\frac{1}{4}(\frac{1}{7}-\frac{1}{9})$…依此类推,则a1+a2+a3+…+a100的值为$\frac{50}{201}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,每个小方格都是边长为1个单位长度的小正方形.
(1)将△ABC向右平移3个单位长度,画出平移后的△A1B1C1
(2)将△ABC绕点O旋转180°,画出旋转后的△A2B2C2
(3)观察探究:△A2B2C2.可以由怎样的图形变换得到△A1B1C1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=6cm,点D、E从点C同时出发,分别以1cm/s和2cm/s的速度沿着射线CB向右移动,以DE为一边在直线BC的上方作等边△DEF,连接CF,设点D、E运动的时间为t秒.
(1)当t为何值时,点F落在边AB上?
(2)t为何值时,以点A为圆心,AF为半径的圆与△CDF的边所在的直线相切?
(3)设点F关于直线AB的对称点为G,在△DEF运动过程中,是否存在某一时刻t,使得以A、C、E、G为顶点的四边形为梯形?若存在,请直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在直角坐标系中,第一次将△OAB变换成△OA1B1
第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成$△O{A_3}{B_{_3}}$,依此类推,已知A(1,3),A1(2,3),A2
(4,3),A3(8,3)…B(2,0),B1(4,0),B2
(8,0),B3(16,0)…
①观察每次变化后的三角形,找出规律,按此规律再将
△OA3B3变换成△OA4B4,则A4的坐标为(16,3),B4的坐标为(32,0)
②若按上述规律,将三角OAB进行n次变换,得三角形△OAnBn,比较每次变换三角形顶点的变化规律,探索顶点An的坐标为(2n,3),顶点Bn的坐标为(2n+1,0).

查看答案和解析>>

同步练习册答案