精英家教网 > 初中数学 > 题目详情
已知D、E分别是△ABC的边AB、AC的中点,DE=2,那么BC的长是(  )
A、1B、2C、4D、6
分析:由题意可知,DE是△ABC的中位线,不仅有DE∥BC,而且有DE=
1
2
BC,所以BC=2DE=2×2=4.
解答:解:∵D、E是AB、AC的中点,精英家教网
∴DE是△ABC的中位线,
∴DE=
1
2
BC,
又∵DE=2,
∴BC=2DE=2×2=4.
故选C.
点评:本题考查了三角形中位线的性质,比较简单,如果三角形中位线的性质没有记住,还可以利用△ADE与△ABC的相似比为1:2,得出正确结论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

作图题
(1)如图1,已知?ABCD两边长分别是1和2,一个内角为60°,将?ABCD剪一刀成两部分,并拼成一个等腰三角形.要求在原图上画出剪切线和组成的等腰三角形,并填写等腰三角形的周长(本题不限作图工具)
图1,周长=
6
6
                      
图2,周长=
2+2
17
2+2
17

(2)如图2,已知正方形ABCD边长为2,将正方形剪两刀成三部分,并拼成一个等腰非直角三角形,要求在原图上画出剪切线和拼成的三角形,并填出等腰三角形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

邻边不相等的矩形纸片,剪去一个正方形,余下一个四边形,称为第一次操作;在余下的四边形中减去一个正方形,又余下一个四边形,称为第二次操作;…,以此类推,若第n次操作后余下的四边形是正方形,则称原矩形是n阶矩形.如图1,矩形ABCD中,若AB=1,AD=2,则矩形ABCD是1阶矩形.
探究:(1)两边分别是2和3的矩形是
2
2
阶矩形;
(2)小聪为了剪去一个正方形,进行如下的操作:如图2,把矩形ABCD沿着BE折叠(点E在AD上),使点A落在BC的点F处,得到四边形ABFE.请证明四边形ABFE是正方形.
(3)操作、计算:
①已知矩形的两边分别是2,a(a>2),而且它是3阶矩形,请画出此矩形及裁剪线的示意图,并在示意图下方直接写出a的值;
②已知矩形的两邻边长为a,b,(a>b),且满足a=5b+m,b=4m.请直接写出矩形是几阶矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知BE、CE分别是△ABC的内角、外角的平分线,∠A=40°,求∠E的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知三角形的两边分别是3和4,第三边长是方程x2-6x+5=0的根,试判断这个三角形的形状.

查看答案和解析>>

同步练习册答案