精英家教网 > 初中数学 > 题目详情

已知在△ABC中,∠A≥∠B≥∠C,且∠A=2∠C,求∠B应满足的条件.

解:在△ABC中,∠A+∠B+∠C=180°,
把∠A=2∠C代入可得:∠C=60°-∠B;∠A=120°-∠B,
∵∠A≥∠B≥∠C,
∴120°-∠B≥∠B≥60°-∠B•
解得:72°≥∠B≥45°,
即∠B应满足的条件是:72°≥∠B≥45°.
分析:利用三角形内角和定理,以及∠A=2∠C,用∠B表示出∠A,∠C,再利用∠A≥∠B≥∠C,即可求出∠B应满足的条件.
点评:此题主要考查了三角形的内角和定理,运用∠B表示出∠A,∠C,是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知在△ABC中,AB=AC=5,BC=8,点G为重心,那么GA=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,已知在△ABC中,∠A=(2x+10)°,∠B=(3x)°,∠ACD是△ABC的一个外角,且∠ACD=(6x-10)°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在△ABC中,∠BAC=90°,AC=4,BC=4
5
,若点D、E、F分别为AB、BC、AC边的中点,点P为AB边上的一个动点(且不与点A、B重合),PQ∥AC,且交BC于点Q,以PQ为一边在点B的异侧作正方形PQMN,设正方形PQMN与矩形ADEF的公共部分的面积为S,BP的长为x,试求S与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在△ABC中,∠BAC为直角,AB=AC,D为AC上一点,CE⊥BD于E.若BD平分∠ABC.
求证:CE=
12
BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,∠B与∠C的平分线交于点P.
(1)当∠A=70°时,求∠BPC的度数;
(2)当∠A=112°时,求∠BPC的度数;
(3)当∠A=α时,求∠BPC的度数.

查看答案和解析>>

同步练习册答案