如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确的是
![]()
A.当弦PB最长时,ΔAPC是等腰三角形 B.当ΔAPC是等腰三角形时,PO⊥AC
C.当PO⊥AC时,∠ACP=300 D.当∠ACP=300时,ΔPBC是直角三角形
C。
【解析】根据圆和等边三角形的性质逐一作出判断:
当弦PB最长时,PB是⊙O的直径,所以根据等边三角形的性质,BP垂直平分AC,从而根据线段垂直平分线上的点到线段两端距离相等的性质得PA=PC,即ΔAPC是等腰三角形,判断A 正确;
当ΔAPC是等腰三角形时,根据垂径定理,得PO⊥AC,判断B正确;
当PO⊥AC时,若点P在劣弧AC上,则∠ACP=300,若点P在优弧AC上,则点P与点B重合,∠ACP=600,则∠ACP=600,判断C错误;
当∠ACP=300时,∠ABP=∠ACP=300,又∠ABC=600,从而∠PBC=300;又∠BPC=∠BAC=600,所以,∠BCP=900,即ΔPBC是直角三角形,判断D正确。
故选C。
科目:初中数学 来源: 题型:
.如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ。当点P运动到原点O处时,记Q得位置为B。
(1)求点B的坐标;
(2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值;
(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2011年初中毕业升学考试(湖南长沙卷)数学 题型:解答题
.如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ。当点P运动到原点O处时,记Q得位置为B。
(1)求点B的坐标;
(2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值;
(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。![]()
查看答案和解析>>
科目:初中数学 来源:2011-2012学年山东胜利七中九年级中考二模数学试卷(解析版) 题型:解答题
如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ.当点P运动到原点O处时,记Q的位置为B.
(1)求点B的坐标;
(2)求证:当点P在x轴上运动(P不与O重合)时,∠ABQ为定值;
![]()
(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源:2011年初中毕业升学考试(湖北黄冈卷)数学 题型:解答题
.如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ。当点P运动到原点O处时,记Q得位置为B。
(1)求点B的坐标;
(2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值;
(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com