精英家教网 > 初中数学 > 题目详情

如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为________.


分析:根据已知条件解直角三角形ABE可求出AE的长,再由菱形的面积等于底×高计算即可.
解答:∵菱形ABCD的边长为4,
∴AB=BC=4,
∵AE⊥BC于E,∠B=60°,
∴sinB==
∴AE=2
∴菱形的面积=4×2=8
故答案为8
点评:本题考查了菱形的性质:四边相等以及特殊角的三角函数值和菱形面积公式的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图所示,在△ABC中,AD⊥BC于点D,E,F分别是AB,AC边的中点,连接DE,EF,FD,当△ABC满足条件
AB=AC(或∠B=∠C,或BD=DC)
时,四边形AEDF是菱形.(填一个你认为恰当的条件即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

30、如图所示,以△ABC的三边为边,分别作三个等边三角形.
(1)求证四边形ADEF是平行四边形;
(2)△ABC满足什么条件时,四边形ADEF是菱形是矩形?
(3)这样的平行四边形ADEF是否总是存在?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图所示,在△ABC中,D、E、F分别是AB、BC、AC边上的中点.
(1)求证:四边形ADEF是平行四边形.
(2)若AB=AC,求证:四边形ADEF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

49、如图所示,在△ABC中,AB=AC,P为BC的中点,PE⊥AB于E,PF⊥AC于F,EM⊥AC于M,FN⊥AB于N,EM与FN相交于点Q,那么四边形PEQF是菱形吗?说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

26、如图所示,Rt△ABC中,∠BAC=Rt∠,AD⊥BC于点D,∠ABC的平分线交AD于O,交AC于E,OG∥AC交BC于G.
(1)求证:∠1=∠2.
(2)求证:△BAO≌△BGO.
(3)求证:四边形AOGE是菱形.

查看答案和解析>>

同步练习册答案