分析 (1)把分子化为($\sqrt{6}$+$\sqrt{3}$)+(3$\sqrt{3}$+3$\sqrt{2}$),逆运用同分母分数的加法法则,再分母有理化.
(2)先化简a,然后变形多项式,再代入求值.
解答 解:(1)$\frac{\sqrt{6}+4\sqrt{3}+3\sqrt{2}}{(\sqrt{6}+\sqrt{3})(\sqrt{3}+\sqrt{2})}$
=$\frac{\sqrt{6}+\sqrt{3}+3\sqrt{3}+3\sqrt{2}}{(\sqrt{6}+\sqrt{3})(\sqrt{3}+\sqrt{2})}$
=$\frac{\sqrt{6}+\sqrt{3}}{(\sqrt{6}+\sqrt{3)(\sqrt{3}+\sqrt{2})}}+\frac{3(\sqrt{3}+\sqrt{2})}{(\sqrt{6}+\sqrt{3})(\sqrt{3}+\sqrt{2})}$
=$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{3}{\sqrt{6}+\sqrt{3}}$
=$\sqrt{3}$-$\sqrt{2}$+$\sqrt{6}$-$\sqrt{3}$
=$\sqrt{6}$-$\sqrt{2}$;
(2)∵a=$\frac{16}{\sqrt{17}+1}$=$\sqrt{17}$-1,
a5+2a4-17a3-a2+18a-17
=a5+2a4+a3-18a3-a2+18a-17
=a3(a+1)2-18a3-a2+18a-17
把a=$\sqrt{17}-1$代入,
原式=17a3-18a3-a2+18a-17
=-a3-a2+18a-17
=-a×($\sqrt{17}-1$)2-a2+18a-17
=-18a+2$\sqrt{17}a$-a2+18a-17
=-a2+2$\sqrt{17}a$-17
=-(a-$\sqrt{17}$)2
当a=$\sqrt{17}-1$时,原式=-(-1)2=-1.
点评 本题考查了二次根式的化简.解决本题的关键是熟练利用运算法则.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | -1 | B. | -1或5 | C. | 5 | D. | -5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com